

VSC-HVDC technology:

European use cases, maturity, experiences and future plans

ERCOT HVDC Workshop June 26, 2023

Cornelis Plet, Vice president – Power System Advisory 26 June 2023

EU 2030 climate & energy policy targets

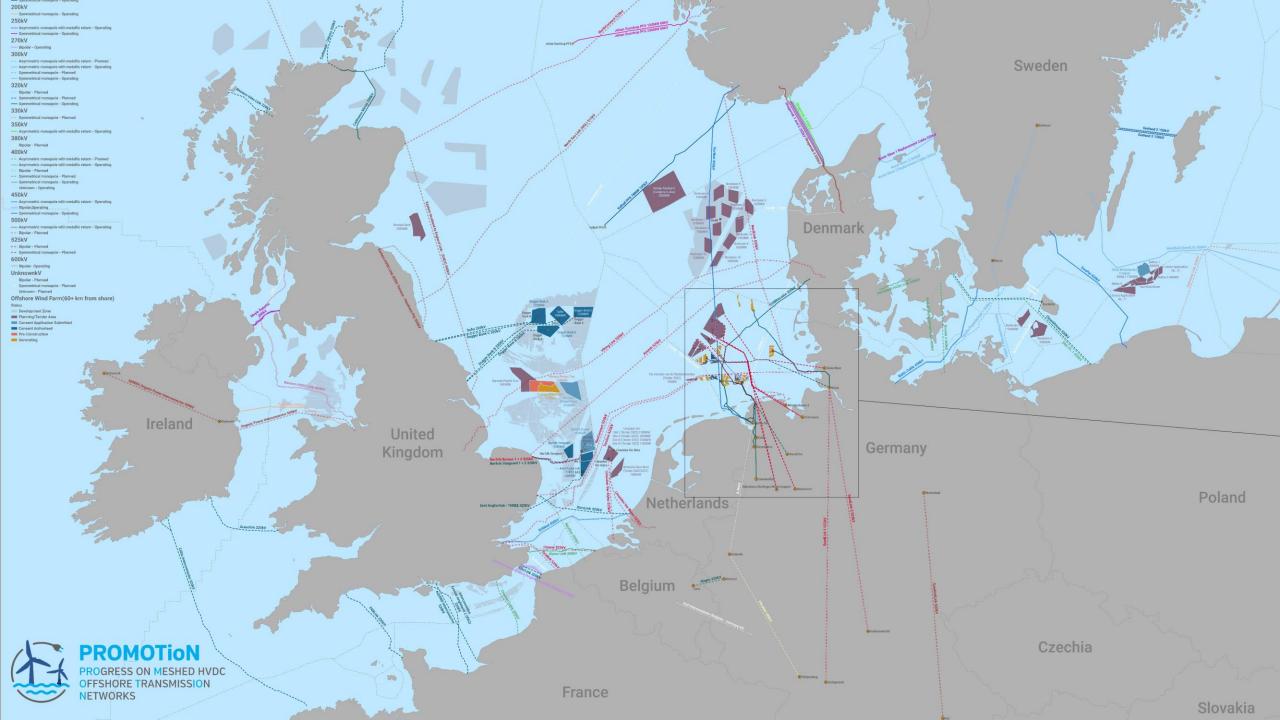
40%

Cut in greenhouse gas emissions compared to 1990 levels 32%

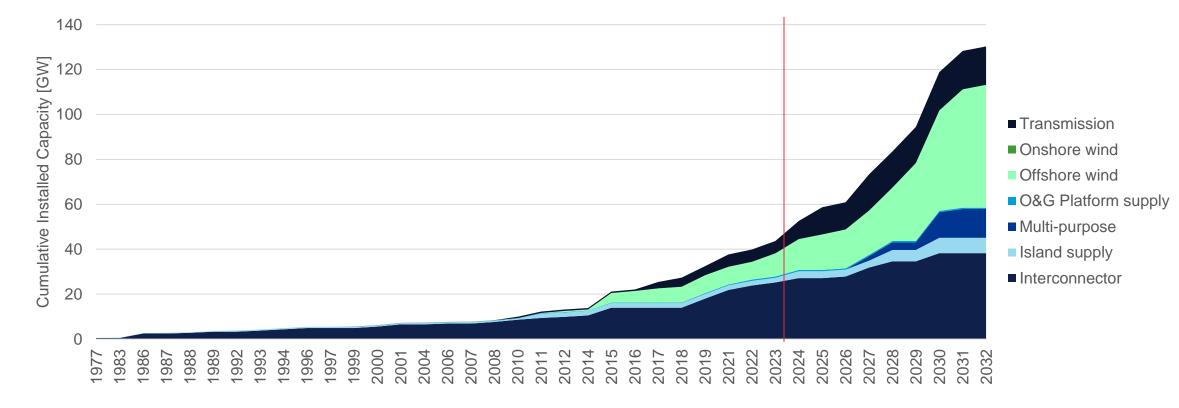
Share of renewable energy consumption

600 GW solar 208.9 GW today 253 GW onshore wind 225 GW today 60 GW offshore wind 30 GW today 32.5%

Energy savings compared with the business-asusual scenario

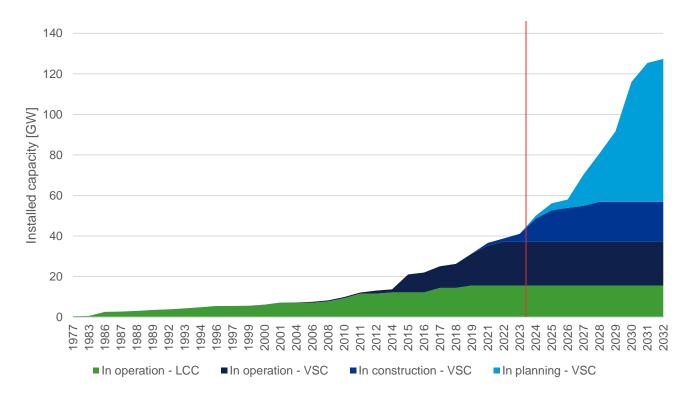

15% Electricity crossborder capacity target

184 GW transfer capacity 93 GW today


HVDC technology enables Europe achieve targets through:

Properties	Connection of different synchronous zones	Efficient effective long distance high capacity transmission	Optimization of use of right-of- way	Connection of remote loads	Connection of remote generation

tions	Back to back	AC grid reinforcement	City centre infeed	Island supply	Offshore wind export		
lica	Controllable transmission across borders			Oil & gas platform supply			
bb	Overlay bulk transmission grids						
\triangleleft							

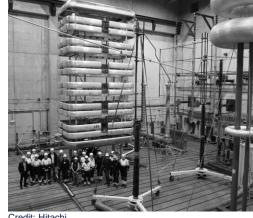


HVDC transmission is rapidly growing in Europe

- Total installed HVDC capacity will more than triple in the next decade.
- Over 60% of this will be used for reinforcing or interconnecting onshore transmission grids

The growth is enabled by a new HVDC converter technology

- The use of Line Commutated Converter technology enabled effective and low-loss long distance and high capacity (cable) transfer capacity
- The use of Voltage Sourced
 Converter technologies also realizes additional benefits
 - Compact & scalable
 - Grid support


Offshore wind export development has driven maturation of Voltage Sourced Converter technology to the point that is clearly the new HVDC industry work horse

HVDC transmission technology is mature

Overhead line

• 1.100 kV, 12 GW in operation

Credit:

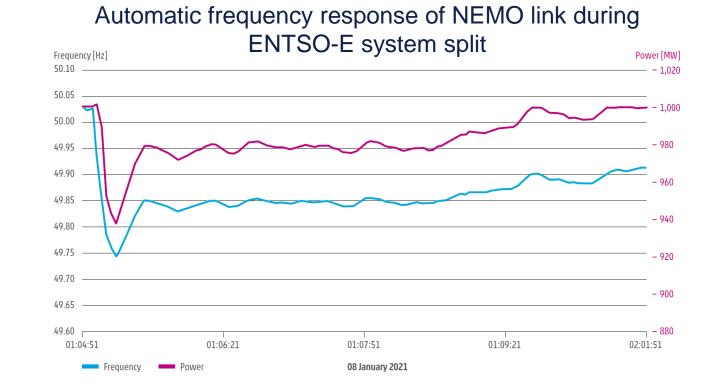
Cables

- Mass-impregnated paper
- 600 kV, 2.2 GW in operation
- 800 kV announced
- Extruded polymer
 - 525 kV, 2.1 GW qualified
 - 640 kV, type tested

Credit: Hitachi

Converters

- Voltage sourced converters
 - 800 kV, 5 GW in operation
- Line commutated converters
 - 1,100 kV, 12 GW in operation

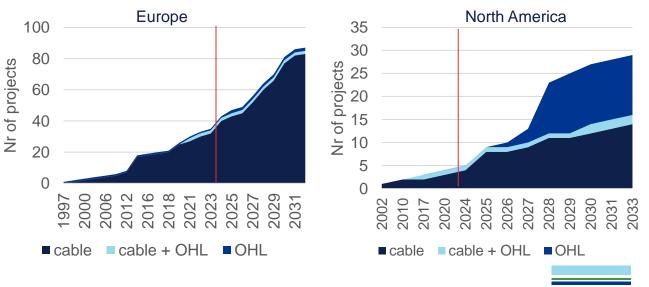

Credit: PROMOTioN

Switchgear

- HVDC circuit breakers
 - 500 kV, 25 kA in operation
- HVDC gas insulated switchgear
 - 250 kV in operation
 - 525 kV qualified

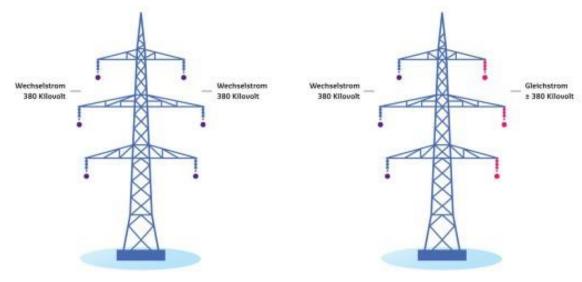
Voltage sourced converters offer valuable grid support capabilities

- VSC-HVDC superior control capabilities
 - Independent and near-instantaneous control of real and reactive power
 - Grid-forming or grid-following
 - Grid-supporting
- VSC-HVDC systems have:
 - Provided reactive power support
 - Provided emergency frequency support
 - Increased security of supply
 - Demonstrated black start capability
 - Emulated AC transmission line for easy integration
 - Damped power oscillations


Operators in Europe opt for HVDC over AC due to VSC's grid support capabilities

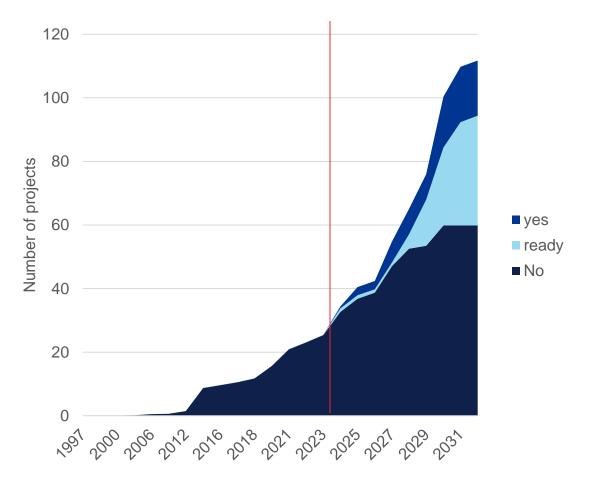
VSC with overhead line

- VSC-HVDC with overhead line is technically feasible
- Majority of VSC-HVDC projects in Europe are completely cable based, in US more OHL
- VSC-HVDC projects using overhead line are in operation today
 - 2 in Europe
 - 9 worldwide
- Several demonstrated technical solutions for dealing with transient faults exist
 - Re-closing of converter breakers (1-2 sec)
 - HVDC circuit breakers (10 msec)
 - Full-bridge converters (us)


NordLink, 515 kV, 1.4 GW, Source: ELNOS

Converting existing AC overhead lines to DC

- Conversion:
 - Add converter stations
 - Replacement of insulator assemblies
 - Potential enhancement of conductors
 - Tower and foundation reinforcements
- In same right-of-way:
 - triple power transmission rating
 - reducing transmission losses
 - avoid AC instability issues
 - gain VSC enabled grid support functions
 - at third to half the cost of building a new DC line
- Combining AC + DC circuits on single tower


- <u>Converting AC power lines to DC for higher transmission ratings, ABB Review 3 / 1997</u>
- Feasibility study for converting 380 kV AC lines to hybrid AC / DC lines, ABB, 2009
- <u>AC-to-DC Power Transmission Line Conversion, EPRI</u>, November 2010
- <u>Guide to the conversion of existing AC lines to DC operation</u>, CIGRE TB583, 2014

ULTRAnet, 380 kV, 2 GW, Source: Amprion

Multi-terminal HVDC grids are on the rise

- The first multi-terminal grids are appearing
 - For now single vendor
- Many future HVDC projects are being specified to be 'multi-terminal ready'
 - Compatible physical characterictics
 - Spare DC disconnector bays
- Several European grid planners have announced plans for multi-terminal HVDC grids
- Initiatives to solve multi-vendor interoperability underway

HVDC overlay grids now long term strategy in Europe!

National and EU wide policy and coordination frameworks support uptake of HVDC

Policy frameworks

- Common EU <u>HVDC AC interface grid code</u>
- <u>Multi-lateral agreements</u> between <u>countries</u> for transmission and wind farm planning
- Market models for interconnectors
- TSO cooperation mechanisms
 - Cross-border grid planning: <u>ENTSO-E</u>, <u>NSWPH</u>, <u>EUROBAR</u>
 - Reserve sharing platforms
 - Monitoring of HVDC performance

Technology coordination

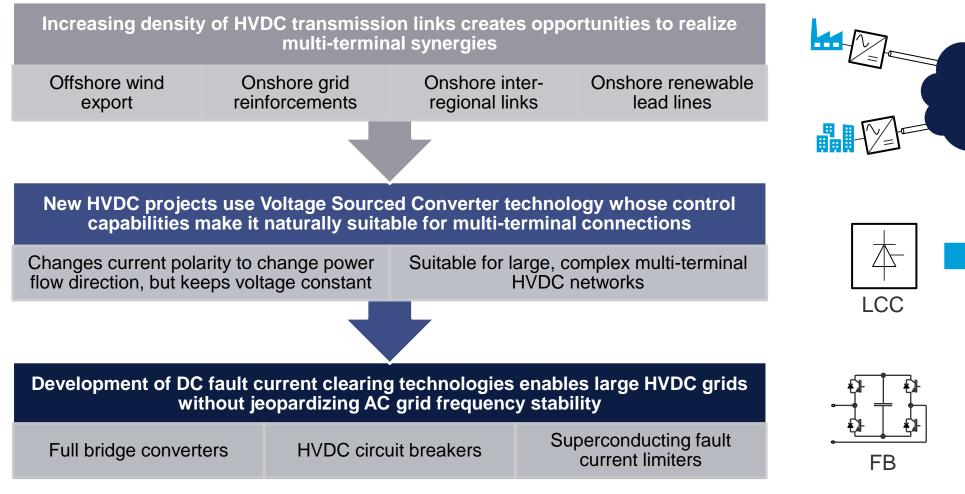
- EU demonstration projects to de-risk HVDC technology: <u>PROMOTioN</u>, <u>Interopera</u>
- TenneT 2 GW, 525 kV program
 - Technology qualification
 - Mega tenders
 - Standardisation
- Multi-terminal technology pilots
 - HVDC circuit breakers
 - <u>Vendor interoperability</u>

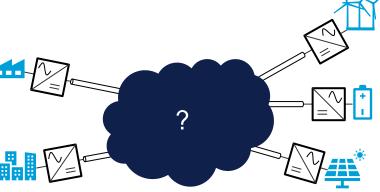
Take aways

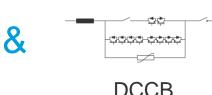
- HVDC technology can be a key enabler of energy policy targets with lowest impact
- HVDC transmission is rapidly growing and significant operational experience exists
- The growth is enabled by valuable grid support capability of Voltage Sourced Converters
- VSC-HVDC transmission is mature technology
- VSC-HVDC can **combine with overhead lines** to increase utilization of existing right of ways
- Convert existing AC overhead lines to DC for improved performance
- HVDC overlay grids now long-term strategy in Europe!
- National and EU wide **policy and coordination frameworks** support uptake of HVDC

Thank you

Cornelis.plet@dnv.com +1 (416) 346 6912


www.dnv.com


15 DNV © 26 JUNE 2023



DNV

Gradual shift from point-point links to multi-terminal

HVDC technology enables Europe achieve its climate & energy policy targets through:

Connection of different synchronous zones	Efficient effective long distance high capacity transmission	Optimization of use of right-of- way	Connection of remote loads	Connection of remote generation				
En	abling compact overhead line							
	Enabling long submarine & underground cable links							
	Improving AC grid performance							
Back to back	AC grid reinforcement	City centre infeed	Island supply	Offshore wind export				
Cont	Controllable transmission across borders			Oil & gas platform supply				
	Overlay bulk transmission grids							
Line Commutated Converter technology								
Voltage Sourced Converter technology								