

BOUNDLESS ENERGY"

Experience with EHV Transmission Up to 765kV

Evan R. Wilcox Director – Advanced Transmission Studies & Modeling American Electric Power

> ERCOT EHV and HVDC Workshop June 26, 2023

About AEP

BOUNDLESS ENERGY⁵⁶

- 5.5 million customers over 11 states.
- Over 8,000 miles of EHV transmission, across 3 RTOs including 2,200 miles of 765kV.
- 30,000 MW of generating capacity.

Experience with 700+kV

BOUNDLESS ENERGY"

- 700+kV systems have been operating in North America since the 1960's.
 - Primarily AEP and Hydro Quebec.
- Other facilities up to 1000kV are being used in South Korea, China, Japan, Russia, South Africa, Venezuela, Brazil, and India.
- Higher voltages used to provide:
 - Higher capacity.
 - Lower impedance, allowing for transfers over longer distances.
 - Lower energy losses.
 - Economies of scale lower cost per MW, more MW in less ROW.

Capacity vs. Loadability

BOUNDLESS ENERGY"

- Thermal capacity is based on the physical characteristics (i.e., the conductor type and size).
 - Shorter lines typically limited by thermal capacity.
- Actual loadability, which varies based on line length, must also consider reactive power consumption.
 - Voltage and stability limit loadability.
- Loadability is influenced by:
 - Voltage level.
 - Structure geometry.
 - Conductor/bundle.
 - External reactive compensation.

How BOLD Works

BOUNDLESS ENERGY.

• Leverage physics to maximize electrical performance:

(1) Reduce phase separation into a "delta" configuration.

(2) Optimize conductor size and bundle diameter.

- Reduces line inductance (L) and increases capacitance (C)
 - Overall impedance (Z) is reduced
- Higher degree of intrinsic "selfcompensation".

Comparison of HVAC Lines

West Texas Case Study

BOUNDLESS ENERGY"

- Generic Transmission Constraints (GTCs) in ERCOT based on stability limits.
- Reactive limits on 345kV CREZ facilities today managed with series capacitors.
- BOLD design analyzed in comparison to existing system to demonstrate the impact of lowering line impedance.

BOUNDLESS ENERGY^M

West Texas Case Study

BOUNDLESS ENERGY[™]

Table 1 – Contingency simulation results															
Contingenc . Y	80% (6206.26 MW)			85% (6594.15 MW)			90% (6982.04 MW)			95%	5 (7369.93 N	/w)	100% (7757.82 MW)		
	Case 0	Case 1	Case 2	Case 0	Case 1	Case 2	Case 0	Case 1	Case 2	Case 0	Case 1	Case 2	Case 0	Case 1	Case 2
Event 1	Stable	Stable	Stable	<mark>Marginall</mark> y stable ¹	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	Unstable	<mark>Marginall</mark> y stable ²	<mark>Marginall</mark> y stable⁵
Event 2	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	Unstable	<mark>Marginall</mark> <mark>y stable³</mark>	Stable
Event 3	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	<mark>Unstable</mark>	Stable	Stable
Event 4	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	Unstable	Stable	Stable
Event 5	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	<mark>Unstable</mark>	<mark>Marginall</mark> <mark>y stable⁴</mark>	<mark>Marginall</mark> y stable ⁶
Event 6	Stable	Stable	Stable	Unstable	Stable	Stable	<mark>Unstable</mark>	Stable	Stable	Unstable	Stable	Stable	Unstable	Stable	Unstable

- Case 0 is the base case(DWG 2023HWLL). By default, one Gauss series capacitor is bypassed. The rest (two at Cross, two at Kirchhoff, one at Gauss) are in service.
- Case1 is Case 0 + BOLD substitutions
- Case2 is Case 1 + two series caps at Cross bypassed

With series capacitors in service, BOLD technology could increase 1,103MW transfer capability (from 80% to 95%) while maintaining stability.

West Texas Case Study

BOUNDLESS ENERGY[™]

Table 2 – Contingency simulation results-without series capacitor																
Continge . ncy	65% (5042.58 MW)		70%(5430.47 MW)		75% (5818.37 MW)		80% (6206.26 MW)		85% (6594.15 MW)		90% (6982.04 MW)		95% (7369.93 MW)		100% (7757.82 MW)	
	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4	Case 3	Case 4
Event 1	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Marginall</mark> y stable	Stable	<mark>Marginall</mark> y stableª	Stable	Unstable	Stable	<mark>Unstable</mark>	Unstable	<mark>Unstable</mark>	<mark>Unstable</mark>
Event 2	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	<mark>Unstable</mark>
Event 3	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	Marginall <mark>y stable^b</mark>
Event 4	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Marginall</mark> y stable	Stable	Unstable	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	<mark>Marginall</mark> y stable ^c
Event 5	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	Stable	<mark>Unstable</mark>	<mark>Unstable</mark>
Event 6	Stable	Stable	Unstable	Stable	Unstable	Stable	<mark>Unstable</mark>	Stable	Unstable	Stable	Unstable	Stable	Unstable	Unstable	Unstable	<mark>Unstable</mark>

- Case3 is Case 0 + series caps at Cross, Gauss and Kirchhoff bypassed
- Case4 is Case 3 + BOLD substitutions

Without series capacitors, BOLD technology could increase 1,940 MW transfer capability (from 65% to 90%) while maintaining stability.

Solution Considerations

BOUNDLESS ENERGY"

• Region/system-level design.

- Line-by-line comparisons may not demonstrate full value of different technologies.
- Voltage control needs.
 - Reactors.
 - Capacitors.
 - FACTS Devices.

• Interconnections.

- Current/future development.
- SSO/SSCI interactions.
- Long-term maintenance.
- Overall cost and benefits.

Conclusions

- Long-distance transmission is not just about a capacity, but system stability.
- Higher-voltage transmission, up to and including 765kV, has been used as an efficient and cost-effective means to bridge long distances for decades.
- Different technologies can complement one another to provide maximum value to the system.
- Solutions should consider a long-term overall system view (HVDC, 765kV, 345kV, FACTS or a combination).