
# Update on Inverter Based Resource (IBR) Modeling and Simulation in ASPEN OneLiner

ERCOT SPWG Meeting July 17th, 2024

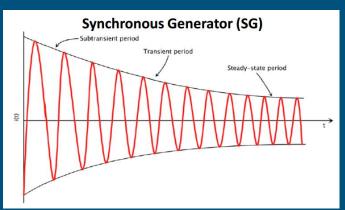
### Content

History of IBR Models in OneLiner
Basic Comparison of Conventional Generator and IBR Models
IBR Phasor Domain Simulation Primer
Active Research and Development

# History of IBR Models in OneLiner



#### Conventional fault current:

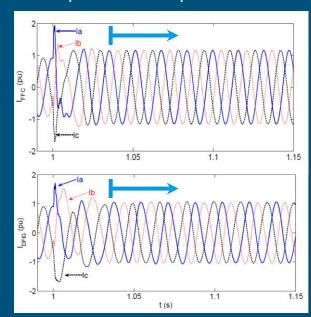

- Uncontrolled
- All 3 sequences: +, -, 0
- Magnitude typically 5 pu or higher
- Angle lags the voltage by approximately 90 deg

#### IBR fault current:

- Computer-controlled
- Magnitude typically 1.1-1.5 pu
- Angle can lag or lead the voltage (control dependent)
- No zero sequence
- No or artificially low negative sequence

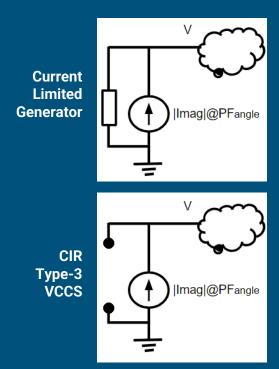
#### **Conventional Generator**

Phasor-domain Solution based on specific time periods

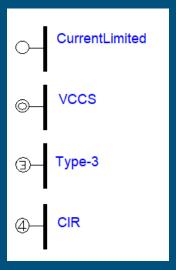



#### **IBR Generator**

Phasor-domain Solution based on post-transient period



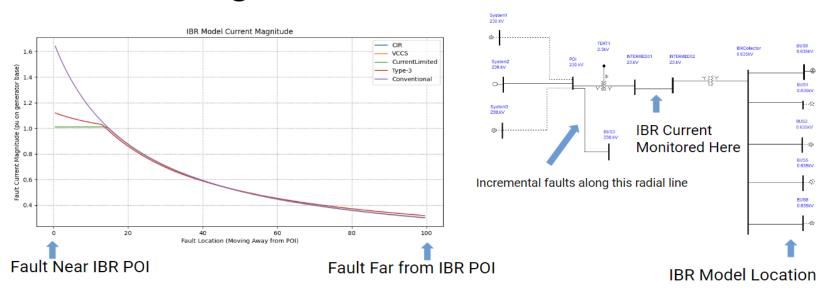

Type-3




Type-3 and Type-4 Diagram Reference: EPRI

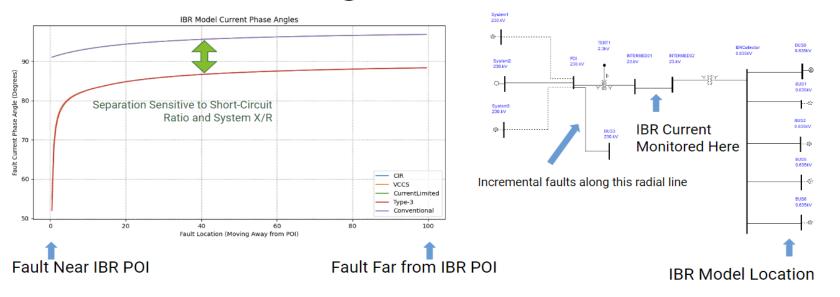
- Ideal voltage-dependent current source
  - Impedance (current-limited generator only)
- Iterative solution (more details later)



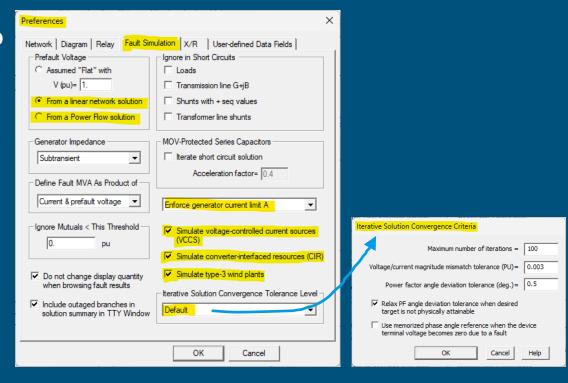

OneLiner Models
Currently Available



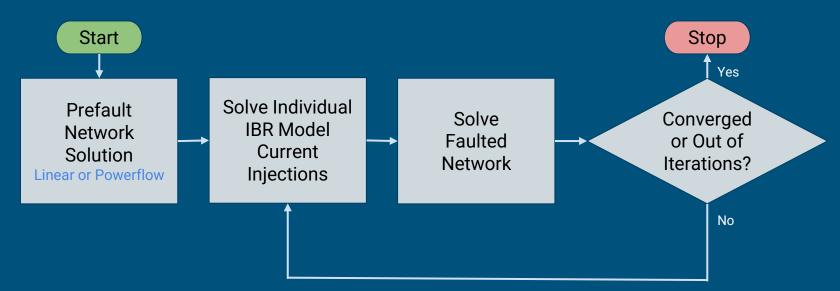
Reference: Modification of Commercial Fault Calculation Programs for Wind Turbine Generators (PES-TR78)


OneLiner Model Response Comparison Example

### **IBR Current Magnitude**




OneLiner Model Response Comparison Example


### **Fault Current Phase Angle**



**Key OneLiner options related to IBR simulation (OneLiner V15.8)** 



#### **Basic Solution Framework**



#### **Prefault Solution with IBR**

Prefault solution must be from:

- a linear network solution, or
- a power flow solution

VCCS, CIR, and Type-3 Wind Plant objects will not be simulated if you choose the "Assumed flat" option.

Recent research indicates that in the long term, full power flow solution may become a requirement for systems with significant amounts of IBR

#### **Prefault Solution Tuning with IBR**

An important first step is tuning the network prefault condition, which can help resolve non-convergence in fault simulations

Significant factors that can affect the prefault network condition

Phase shift anomalies - Generators and Transformers

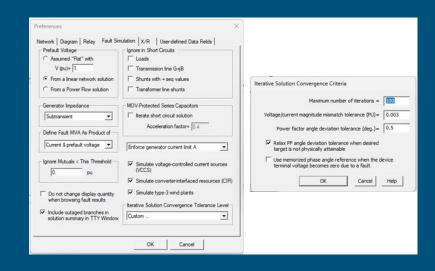
Off-nominal transformer taps

Generator REFV settings

Generation/Load balance

Nonlinear participation in linear prefault solution

#### Tools that May Help with Tuning the Network Prefault Condition


#### **OneLiner Built-in Tools**

Transformer phase-shift anomalies
Generator reference angle anomalies
Transformer tap anomalies
IBR Modeling and Simulation FAQ

#### Coming soon:

#### **Python OlxAPI Applications**

Transformer Phase Shift Anomaly Tool Network Review Tool



#### Fault solution with IBR

IBR models are nonlinear

Analytic or exact solutions of nonlinear equations is often not possible

Iterative methods can be used to solve nonlinear models

- Continue iterating until each quantity is within a specified tolerance
- Non-convergence means that, for at least one nonlinear model, at least one of the specified tolerances was not met
- Convergence of iterative methods depends on the initial conditions

#### **Fault Ride Through Model Limitations**

CIR, Type-3, and VCCS are Functional Models

- The internal device topology and circuit physics are not simulated directly in OneLiner
- Simulation represents the post-transient period of IBR fault ride through based on functional requirements
- The model is grid-following it needs a reference from the grid
- Low Short Circuit Ratio can result in unstable solution because of hunting
- POI path impedance errors can have a significant impact

Large number of IBR models will slow down the network solution

We are actively enhancing the solution algorithm to improve network solution time

#### Important considerations when including IBR models in your network

The Thevenin equivalent theorems apply to linear circuits

- The OneLiner Thevenin calculation only account for the linear circuit elements
- TTY and other Thevenin reports in OneLiner are linear only
- As IBR models increase within your network, you must take into account that the nonlinear elements are ignored in the Thevenin values

\*We have developed a demo Python API script to calculate the nonlinear Thevenin based on the Voc/Isc definition and the nonlinear OneLiner simulation results, if needed

### All models are wrong, therefore:

- a "correct" model cannot be obtained with excessive detail
- we must be aware of where a model is "importantly wrong"

Key point: Modeling and simulation has always required judgment, the same is true of these new models

Example where the phasor-domain model of grid-following IBRs can be importantly wrong:

- 3LG POI fault because the grid-following IBR loses its reference angle
  - This is an area of active research
  - OneLiner V15.8 includes an optional feature to emulate one kind of 3LG POI fault ride through for IBR

\*George E. P. Box, "Science and Statistics", 1976 (Paraphrased)

# Active Research and Development

#### **PLL Phase Angle Memorization or Freeze**

 When voltage is too small to measure reference angle, emulate PLL freeze during 3LG POI Fault - (Feature available in OneLiner V15.8)

#### **DLL Approach to Detailed IBR Modeling**

- DLL allow protected representation of detailed short circuit models from vendors
- Nonlinear network calculations still done by OneLiner
- OneLiner quantities passed to DLL for use in internal calculations
- Let us know if your OEM provider would like to discuss

# Questions?

#### Recommendation:

Update to the latest version of OneLiner regularly, since the VCCS, Type-3, and CIR models are relatively new and we continue to make improvements and fix bugs