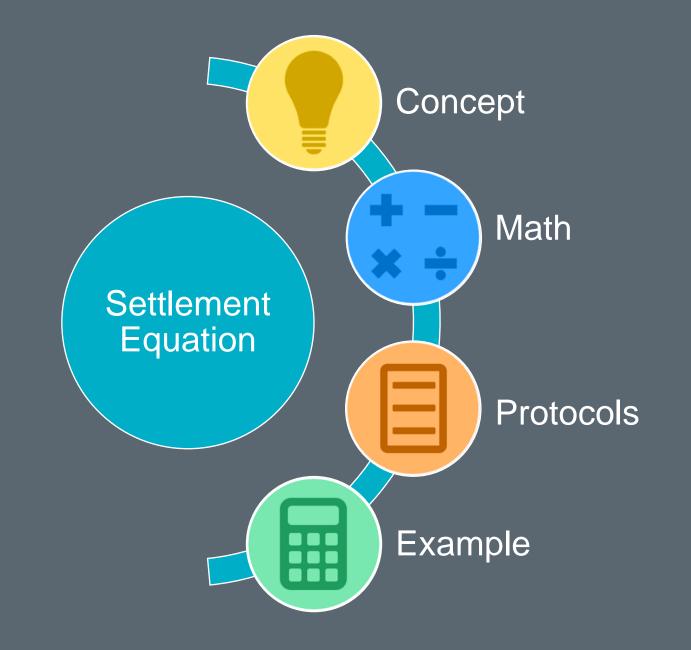


Settlement: Ancillary Services

Greetings and Introductions

WebEx Tips

- Windows
- Buttons
- **Attendance**
- **Questions / Chat**



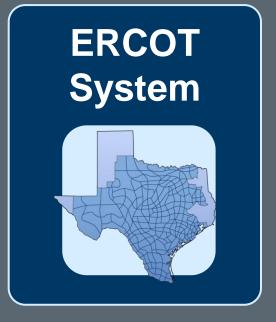
PROTOCOL DISCLAIMER

This presentation provides a general overview of the Texas Nodal Market and is not intended to be a substitute for the ERCOT Protocols, as amended from time to time. If any conflict exists between this presentation and the ERCOT Protocols, the ERCOT Protocols shall control in all respects.

For more information, please visit: http://www.ercot.com/mktrules/nprotocols/

Topics in this course include:

Which Markets & Which Participants?



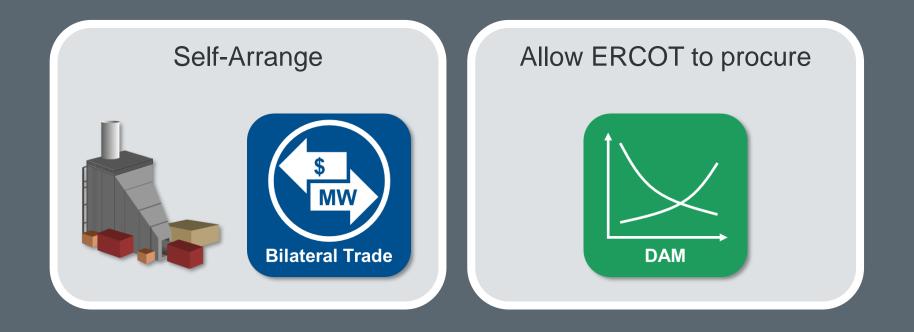
Five Ancillary Service (AS) Settlement Types:

RU – Regulation Up RD – Regulation Down RR – Responsive Reserve ECR – ERCOT Contingency Reserve NS – Non-Spin Reserve

ercot \$

Where is the Payment or the Charge to the QSE (-/+)?

Ancillary Service Procurement


Ancillary Service Obligations: Concept

ERCOT allocates Ancillary Service Plan Load Ratio Share QSE Load Ratio Share QSE Load Ratio Share ERCOT QSE DAM

QSE chooses how to fulfill

Regulation Up Procurement

- DAM Obligation = 5MW RU for one hour
- Self Arranged = 2MW RU for the same hour
- Regulation Up Price = \$14/MW

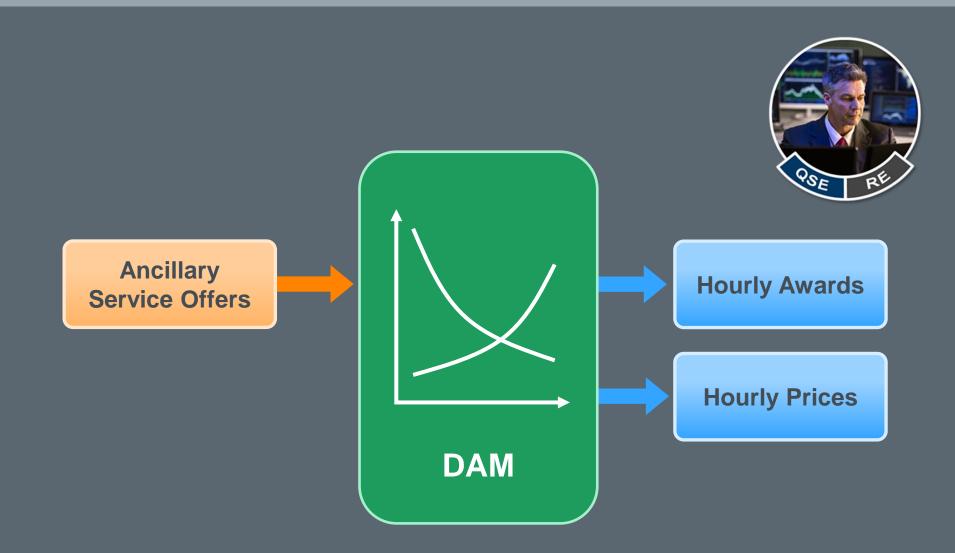
AS Procurement = RU Price * Net Quantity AS Procurement = \$14/MW * (5MW – 2MW) AS Procurement = \$14/MW * 3MW \$42 for Regulation Up for the hour

DARUAMT = **Day-Ahead Reg-Up Amount**

$DA\underline{RU}AMT_{q} = DA\underline{RU}PR * DA\underline{RU}Q_{q}$ Where: $DA\underline{RU}Q_{q} = DA\underline{RU}O_{q} - DASA\underline{RU}Q_{q}$

DA <u>RU</u> PR	Day-Ahead Reg-Up Price
DA <u>RU</u> Q	Day-Ahead Reg-Up Quantity
DA <u>RU</u> O	Day-Ahead Reg-Up Obligation
DASA <u>RU</u> Q	Day-Ahead Self-Arranged Reg-Up Quantity
q	QSE

Settle Regulation Down Procurement


- DAM Obligation = 8MW RD for Hour 17
- Self Arranged = 1.5MW RD for Hour 17
- Regulation Down Price = \$38/MW

Ancillary Service Offer

Ancillary Service Offer: Concept

ercot 5

Ancillary Service Offer: Math

Awarded ERCOT Contingency Reserve Offer

- DAM Quantity = 90MW ECR for one hour
- ERCOT Contingency Reserve Price = \$23/MW

AS Award = (-1) * ECR Price * Quantity AS Award = (-1) * \$23/MW * 90MW -\$2,070 for ERCOT Contingency Reserve for the hour

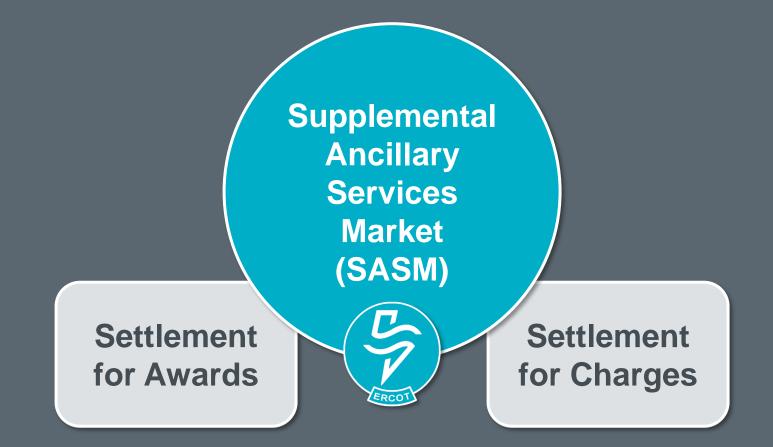
PCECRAMT = Procured Capacity for ERCOT Contingency Reserve Service Amount

MCPC <u>ECR</u>	Market Clearing Price Capacity ERCOT Contingency Reserve
PC <u>ECR</u>	Procured Capacity ERCOT Contingency Reserve
q, DAM	QSE, Day-Ahead Market

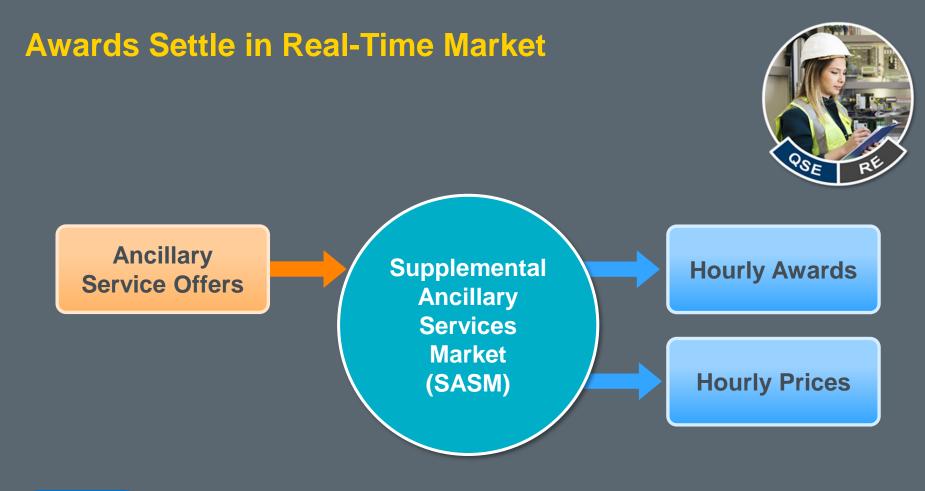
ercot₽

Settle Awarded Responsive Reserve Offer

- DAM Quantity = 55MW RR for Hour 16
- Responsive Reserve Price = \$77/MW



Supplemental Ancillary Services Market (SASM) Offer


ercot \$

Ancillary Service changes during Adjustment Period

SASM Offer: Concept

ercot \$

SASM Offer: Math

Awarded Regulation Down Offer

- SASM Quantity = 12MW RD for one hour
- Regulation Down Price = \$450/MW

SASM Award = (-1) * RD Price * Quantity SASM Award = (-1) * \$450/MW * 12MW -\$5,400 for Regulation Down for the hour

RTPCRDAMT = **Procured Capacity for Reg-Down Amount**

RTPC<u>RD</u>**AMT**_{q,m} = (-1) * **MCPC**<u>RD</u>_m * **RTPC**<u>RD</u>_{q,m}

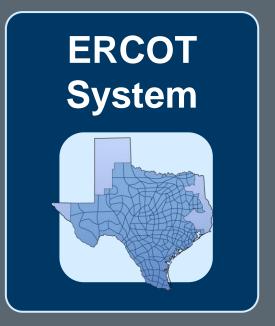
MCPC <u>RD</u>	Market Clearing Price Capacity Reg-Down
RTPC <u>RD</u>	Procured Capacity Reg-Down
q, m	QSE, AS Market (SASM)

Settle Awarded Regulation Up Offer

- SASM Quantity = 9MW RU for last 12 hours of the day
- Reg-Up Price (Hour 13 through Hour 20) = \$111/MW
- Reg-Up Price (Hour 21 through Hour 24) = \$46/MW

Failure to Provide an Ancillary Service

Resource is unable to provide AS


Charge = Max of AS Market Prices or Average Real-Time AS Imbalance Price

RTRSVPOR = Real-Time Reserve Price for On-Line Reserves

RTRDP

= Real-Time On-Line Reliability Deployment Price

Average of the sum of both Prices for the hour

Non-Spin Reserve Failure

- Quantity = 25MW NS for one hour
- NS Price for the hour in DAM = \$30/MW
- NS Price for the hour in 1st SASM = \$300/MW
- NS Price for the hour in 2nd SASM = \$3,000/MW
- Average Real-Time AS Imbalance Price for the hour = \$900/MW

NS Failure = Max (Price) * Quantity NS Failure = \$3000/MW * 25MW \$75,000 for NS Failure Quantity for the hour

NSFQAMT = Non-Spin Failure Quantity Amount

$\underline{NS}FQAMT_{q} = Max(MCPC\underline{NS}_{m}, AVGRTASIP) * (\underline{NS}FQ_{q} + T\underline{NS}FQ_{q})$ Where: AVGRTASIP = $\sum (RTRSVPOR + RTRDP) / 4$

MCPC <u>NS</u>	Market Clearing Price Capacity Non-Spin
AVGRTASIP	Average Real-Time Ancillary Service Imbalance Price
<u>NS</u> FQ	Non-Spin Failure Quantity
T <u>NS</u> FQ	Telemetered Non-Spin Failure Quantity
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves
RTRDP	Real-Time On-Line Reliability Deployment Price
q, m	QSE, AS Market (DAM or SASM)

Settle ERCOT Contingency Reserve Failure

- ECRFQ + TECRFQ = 29MW for Hour 18 •
- ECR Price for Hour 18 in DAM = \$45/MW
- ECR Price for Hour 18 in SASM = \$98/MW \bullet
- Average Real-Time AS Imbalance Price for Hour 18 = \$3/MW



Infeasible Ancillary Service

Infeasible AS: Concept

Charge = DAM Price

ercot \$

ercot 5

Infeasible Regulation Up

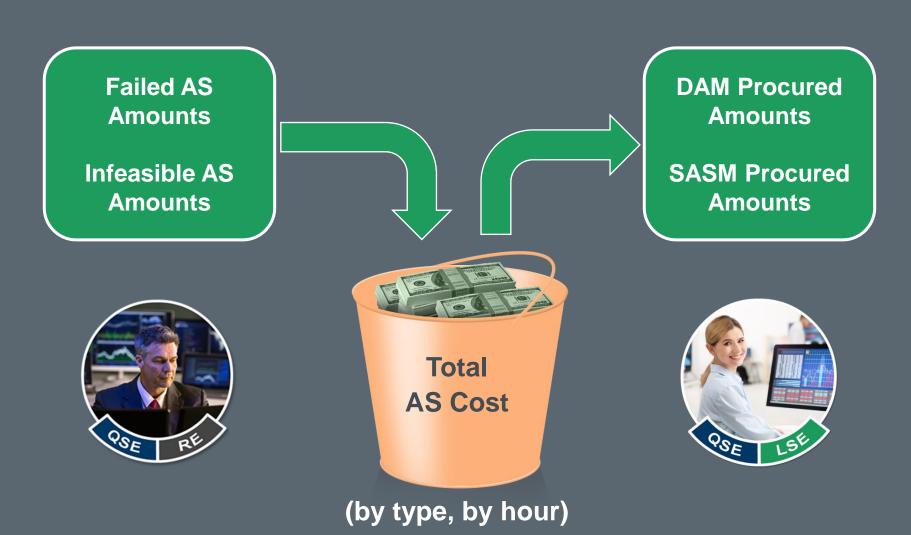
- Quantity = 16MW RU for one hour
- Reg-Up Price for the hour in DAM = \$42/MW
- Reg-Up Price for the hour in SASM = \$4,200/MW

Infeasible RU = RU Price_{DAM} * Quantity Infeasible RU = \$42/MW * 16MW \$672 for Infeasible Reg-Up for the hour

RUINFQAMT = Reg-Up Infeasible Quantity Amount

$\underline{RU}INFQAMT_{q} = \underline{MCPCRU}_{DAM} * \underline{RU}INFQ_{q}$

MCPC <u>RU</u>	Market Clearing Price Capacity Reg-Up
<u>RU</u> INFQ	Reg-Up Infeasible Quantity
q, DAM	QSE, Day-Ahead Market


Settle Infeasible Regulation Down

- Quantity = 14MW RD for last 10 hours of the day
- DAM RD Price (Hour 15 through Hour 19) = \$55/MW
- DAM RD Price (Hour 20 through Hour 24) = \$23/MW

Total Ancillary Service Cost Allocation

ercot \$

Allocation of Ancillary Service Costs: Concept

ercot 5

Obligation Allocated (by type, by hour)

Total Responsive Reserve Costs

- RR Quantities for one hour:
 - This QSE Self-Arranged 100MW
 - This QSE has 5% of the ERCOT Load
 - All QSEs Self-Arranged 900MW
 - ERCOT procured 2000MW in DAM
 - ERCOT procured 10MW in SASM (Failed Quantity)
 - Total Procurement is 2000MW (not Self Arranged, 2000 + 10 10)
- RR Costs for the same hour:
 - DAM Cost = \$16,000
 - SASM Cost = \$600
 - Failed Quantity Charge = \$600
 - Net Total Cost is \$16,000 (\$16,000 + \$600 \$600)

ercot \$

Total Responsive Reserve Costs

AS Price = Total Cost / Total Procurement AS Price = \$16,000 / 2000MW = \$8/MW

QSE Obligation = ∑_{QSEs} (Self-Arranged + SASM + DAM – Failed Qty) * Ratio = (900MW + 10MW + 2000MW – 10MW) * 5% = 2900MW * 0.05 = 145MW

RR Cost = AS Price * (Obligation – Self Arranged) RR Cost = \$8/MW * (145MW – 100 MW) RR Cost = \$8/MW * 45MW = \$360 for the hour

<u>RR</u>COST = Responsive Reserve Cost

 $\underline{RR}COST_{q} = \underline{RR}PR * \underline{RR}Q_{q}$

Where: <u>RR</u>PR = <u>RR</u>COSTTOT / <u>RR</u>QTOT & <u>RR</u>Q_q = <u>RR</u>O_q - <u>SARR</u>Q_q

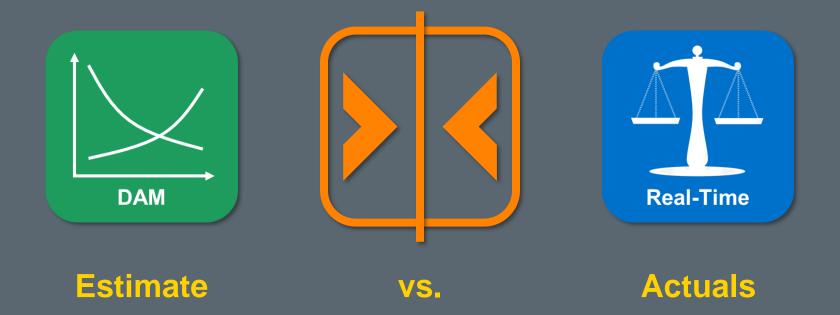
Where: $\underline{RRO}_{q} = \sum_{q} (\underline{SARRQ}_{q} + \underline{RTPCR}_{q} + \underline{PCRR}_{q} - \underline{RRFQ}_{q}) * \underline{HLRS}_{q}$

<u>RR</u> PR	Responsive Reserve Price
RRQ(TOT), RRO	RR Quantity (Total), RR Obligation
<u>RR</u> COSTTOT	Responsive Reserve Cost Total
SA <u>RR</u> Q, <u>RR</u> FQ	Self-Arranged RR Quantity, RR Failure Quantity
RTPC <u>RR</u> , PC <u>RR</u>	Procured Capacity RR (SASMs & DAM)
HLRS, q	Hourly Load Ratio Share, QSE

Settle Total Non-Spin Reserve Costs

- NS Quantities for Hour 7:
 - This QSE Self-Arranged 80MW
 - This QSE has 10% of the ERCOT Load
 - All QSEs Self-Arranged 810MW
 - ERCOT procured 990MW in DAM
 - ERCOT procured 10MW in SASM (Infeasible)
 - Total Procurement is 1000MW (not Self Arranged, 990 + 10)
- NS Costs for the same hour:
 - DAM Cost = \$9,900
 - SASM Cost = \$1,200
 - Infeasible Charge = \$100
 - Net Total Cost is \$11,000 (\$9,900 + \$1,200 \$100)

Settle Total Non-Spin Reserve Costs



Ancillary Service Procurement Adjustment Costs

ercot 5

DAM AS Amounts compared to Total AS Costs

RTM AS Amount = Total AS Cost – DAM AS Amount

ercot 5

Real-Time Responsive Reserve Amount

- RR Cost for QSE = \$360 for one hour
- DAM RR Amount for QSE = \$240 for one hour

RTM RR Amount = RR Cost – DAM RR Amount RTM RR Amount = \$360 – \$240 \$120 Real-Time RR Amount for the hour

RTRRAMT = **ReaI-Time Responsive Reserve Amount**

$RT\underline{RR}AMT_q = \underline{RR}COST_q - DA\underline{RR}AMT_q$

<u>RR</u> COST	Responsive Reserve Cost
DA <u>RR</u> AMT	Day-Ahead Responsive Reserve Amount
q	QSE

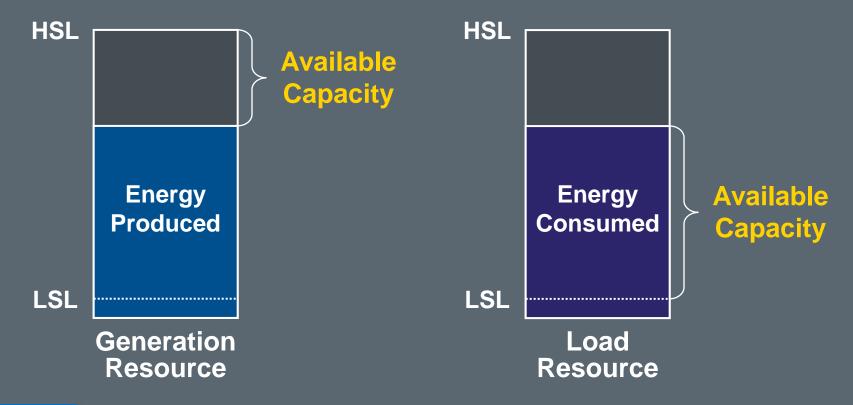
ercot \$

ercot 🖓

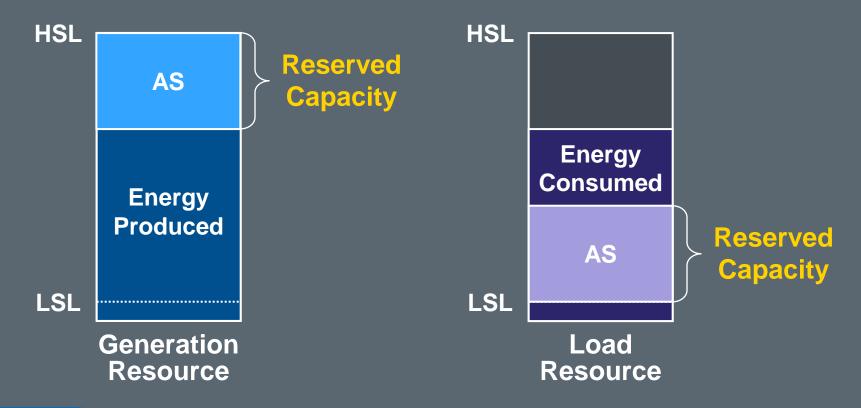
Settle Real-Time Non-Spin Reserve Amount

- NS Cost for QSE = \$1111 for Hour 7
- DAM NS Amount for QSE = \$1300 for Hour 7

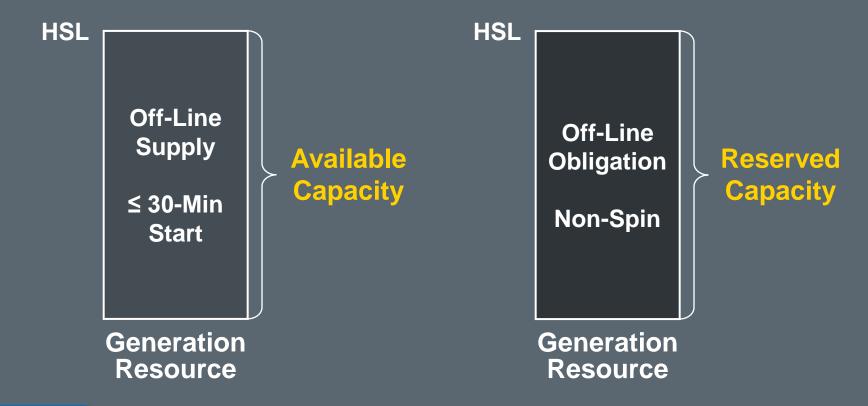
Real-Time Ancillary Service Imbalance


Calculated ERCOT-wide per QSE

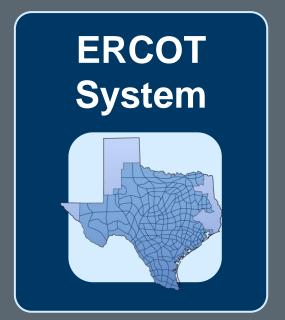
ercot \$


Online Reserve Supplies

ercot \$

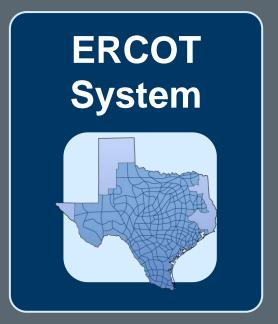

Online Reserve Obligations

Offline Reserve Supplies & Obligations



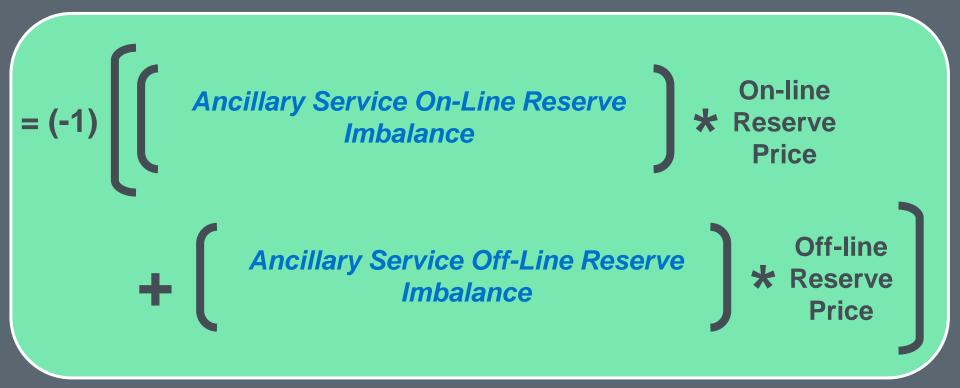
RTORPA = Real-Time On-Line Reserve Price Adder

RTOFFPA = Real-Time Off-Line Reserve Price Adder


Adders are produced for each SCED interval

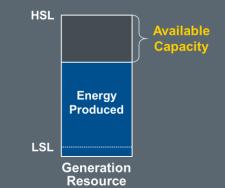
RTRSVPOR = Real-Time Reserve Price for On-Line Reserves

RTRSVPOFF = Real-Time Reserve Price for Off-Line Reserves



Time-Weighted Average for each 15-minute interval

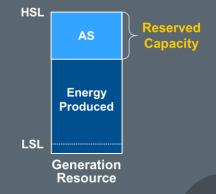
Calculated ERCOT-wide per QSE



AS On-Line Reserve Imbalance: Concept

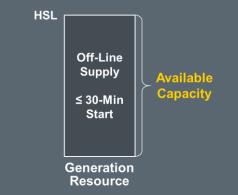
ercot₽

On-Line Supply = On-Line Capacity

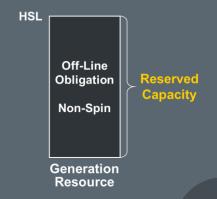

- Generation Resources (HSL Metered Generation)
- Controllable Load Resources
- Non-Controllable Load Resources

On-Line Obligations = On-Line AS

- Ancillary Service Supply Responsibility
- Excluding Off-Line Generation Resources with NS Schedule
- Excluding Non-Controllable Load Resources with NS Responsibility



AS Off-Line Reserve Imbalance: Concept


Off-Line Supply = Off-Line Capacity

- Generation Resources with 30-Min Cold Start
- Generation Resources with NS Schedule
- Non-Controllable Load Resources with NS Schedule

Off-Line Obligations = Off-Line AS

- Off-Line Generation Resources with NS Schedule
- Non-Controllable Load Resources with NS Responsibility

AS Supplies & Obligations

- QSE has One Generation Resource (On-Line)
- HSL is 200MW (50MWh for the interval)
- Metered Generation is 40MWh for the interval
- No AS commitments
- On-line Reserve Price = \$20/MWh, Off-line Reserve Price = \$5/MWh

AS On-Line Imbalance = HSL – Metered Gen AS On-Line Imbalance = 50MWh – 40MWh 10MWh for the interval

AS Supplies & Obligations

- QSE has One Generation Resource (On-Line)
- HSL is 200MW (50MWh for the interval)
- Metered Generation is 40MWh for the interval
- No AS commitments
- On-line Reserve Price = \$20/MWh, Off-line Reserve Price = \$5/MWh

AS Imbalance = (-1) * [(AS On-Line Imbalance * On-line Reserve Price) + (AS Off-Line Imbalance * Off-Line Reserve Price)] AS Imbalance = (-1) * [(10MWh * \$20/MWh) + (0 * \$5/MWh)] -\$200 Real-Time AS Imbalance for the interval

RTASIAMT = Real-Time Ancillary Service Imbalance Amount

RTASIAMT_q = (-1) * [(RTASOLIMB_q * RTRSVPOR) + (RTASOFFIMB_q * RTRSVPOFF)

	RTASOLIMB	Real-Time Ancillary Service On-Line Reserve Imbalance
	RTASOFFIMB	Real-Time Ancillary Service Off-Line Reserve Imbalance
	RTRSVPOR	Real-Time Reserve Price for On-Line Reserves
	RTRSVPOFF	Real-Time Reserve Price for Off-Line Reserves
	q	QSE

Real-Time

RTOLCAP	Real-Time On-Line Reserve Capacity
RTASRESP	Real-Time Ancillary Service Supply Responsibility
RTASOFF	Real-Time AS Schedule for Off-Line Generation Resource
RTNCLRNSRESP	Real-Time Non-Controllable Load Resource NS Responsibility
RTOLHSL	Real-Time On-Line High Sustained Limit
RTGMQ	Real-Time Generation Metered Quantity
RTCLRCAP	Real-Time Controllable Load Resource Capacity
RTNCLRCAP	Real-Time Non-Controllable Load Resource Capacity

ercot \$

RTOFFCAP	Real-Time Off-Line Reserve Capacity
RTASOFF	Real-Time AS Schedule for Off-Line Generation Resource
RTNCLRNSRESP	Real-Time Non-Controllable Load Resource NS Responsibility
RTCST30HSL	Real-Time Cold Start Generation Resource (≤ 30 min) @ HSL
RTOFFNSHSL	Real-Time Generation Resource Off-Line NS Schedule @ HSL
RTNCLRNSCAP	Real-Time Non-Controllable Load Resource NS Capacity

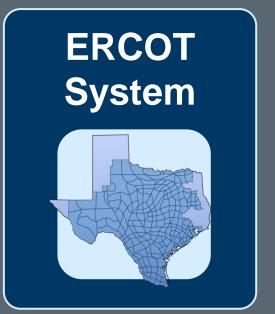
ercot \$

ercot 🖗

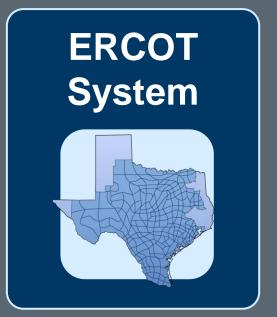
Settle AS Supplies & Obligations

- QSE has One Generation Resource (On-Line)
- HSL is 400MW (100MWh for Interval 0845)
- Metered Generation is 50MWh for Interval 0845
- RR commitment of 20MW for Hour 9
- On-line Reserve Price = \$25/MWh

Real-Time Reliability Deployment Ancillary Service Imbalance


Calculated ERCOT-wide per QSE

RTORDPA = Real-Time On-Line Reliability Deployment Price Adder



Adders are produced for each SCED interval

RTRDP = Real-Time On-Line Reliability Deployment Price

Time-Weighted Average for each 15-minute interval

AS Supplies & Obligations

- AS On-Line Imbalance = 451MWh for the interval
- Reliability Deployment Price = \$14/MWh

Reliability Imbalance = (-1) * (AS On-Line Imbalance * Reliability Price) Reliability Imbalance = (-1) * (451MWh * \$14/MWh) -\$6,314 Reliability Imbalance for the interval

RTRDASIAMT = Real-Time Reliability Deployment Ancillary Service Imbalance Amount

RTRDASIAMT_q = (-1) * (**RTASOLIMB**_q * **RTRDP**)

RTASOLIMB	Real-Time Ancillary Service On-Line Reserve Imbalance
RTRDP	Real-Time On-Line Reliability Deployment Price
q	QSE

ercot ₽

Settle AS Supplies & Obligations

- AS On-Line Imbalance = -50MWh for Interval 1115
- Reliability Deployment Price = \$22/MWh

Topics in this course included:

ERCOT Client Services <u>Clientservices@ercot.com</u>

ERCOT Mailing Lists http://lists.ercot.com/

ERCOT Nodal Market Protocols http://www.ercot.com/mktrules/nprotocols/

ERCOT Training http://www.ercot.com/services/training/

Market Education Contact Training@ercot.com

Scan this QR code to take the course survey! <u>https://www.surveymonkey.com/r/ERCOTILT</u>

