

Phasor Measurement Units (PMU) and Wide Area Monitoring Systems (WAMS)

October 9, 2024

Jim Follum

PNNL is operated by Battelle for the U.S. Department of Energy

What is a Phasor Measurement Unit (PMU)?

A device that produces synchrophasors: synchronized measurements of voltage and current phasors (magnitude and phase) based on a common time source

2

Why PMUs? Synchronization

Substation A

Substation B

By synchronizing the sampling processes for signals hundreds of miles apart, we gain a wide-area view of the system

Why PMUs? Synchronization

Why PMUs? High-Speed Streaming

- PMUs provide the "missing link"
- Digital Fault Recorder (DFR)
 - Locally triggered waveform recording
 - Thousands of measurements per second for short duration
- Supervisory Control And Data Acquisition (SCADA)
 - Report once every 1-4 seconds
 - Timestamped upon arrival
- PMU
 - Continuously stream phasors 30-60 times per second
 - Streaming is critical for many highvalue applications

Source: Dominion Energy

Use Cases

Background on Oscillations

Several PMU applications are related to analysis of low frequency (< 15 Hz) oscillations in power and system frequency

> Natural (Modal): A System Stability Problem

Forced: An Equipment Problem Impacting a Wide Area

Oscillation Source Localization at ISO New England

Source: ISO-NE, https://www.esig.energy/download/session-1-experience-with-oscillations-in-iso-new-england-slava-maslennikov/

Control Room Operations at Bonneville Power Administration (BPA)

Source: BPA, https://www.naspi.org/sites/default/files/2024-04/D2 S07 P01 Goodrich Hopson BPA 20240417.pdf

Inertia Monitoring at National Grid (UK)

Source: National Grid, https://www.naspi.org/node/898

Inertia Monitoring at National Grid (UK)

Source: National Grid, https://www.naspi.org/node/898

Broken Conductor Tripping at San Diego Gas and Electric (SDG&E)

- Fires caused by falling conductors are a significant concern for SDG&E
- They pioneered a method of detecting and tripping falling conductors while still in the air using PMUs
- A commercial solution is now available

Source: SDG&E, https://www.naspi.org/sites/default/files/2019-10/04 SDGE Dietmeyer 20191029.pdf

Linear State Estimation (LSE) at Tennessee Valley Authority (TVA)

- State estimation is fundamental to power system operation
- Due to synchronization, PMUs directly observe the system's state at the buses they are monitoring
- Linear equations are solved without iteration at the PMU reporting rate to increase system observability

Source: EPG and TVA, https://www.naspi.org/sites/default/files/2024-05/D1 S01 P02 Nayak EPA.pdf

• The LSE feeds a variety of applications

Automated Power Plant Model Validation at ISO **New England**

- PMU-based power plant model validation is widely deployed
- Compares measured and simulated responses to disturbances
- Cost-effective approach to meet model verification requirements
- At ISO New England, PMU-based model validation has been automated
 - Detects system disturbances
 - Emails results when poor performance identified

Source: BPA, https://www.naspi.org/sites/default/files/2016-10/bpa kosterev power plant model validation 20152014.pdf

Deployment Considerations

PMU Placement

- It's more a question of *where* than *how many*
 - Small number of PMUs can have a big impact
 - Organizations find value with partial observability while gradually adding PMUs
- The needs of intended applications should be the primary determining factor
 - Oscillation source localization: generation sites, tie-lines between regions
 - Mode metering: locations participating in the oscillation
 - State estimation: extends system observability
- Additional factors can be used to rank potential locations¹
 - Bus Voltage
 - Line Flow
- Generation Capacity
 - Number of Lines
 - Line Length
- Tie-Lines

- Average Load
 - Variable Generation
 - Synchronous Condensers

Installation Costs and Participation from Transmission Service Providers (TSPs)

- A 2014 DOE study found costs per PMU installation ranged from \$40,000 to \$180,000¹
- Cost drivers in order of importance
 - Communications highly dependent on existing infrastructure
 - Security particularly CIP compliance
 - Labor reduced if coordinated with other planned outages
 - Equipment typically < 5%</p>
- Many Reliability Coordinators and Independent System Operators have struggled gaining voluntary support from their TSPs
 - Several now require PMU installation at new generation facilities and upgraded substations
 - Requirements have successfully allowed the TSPs to justify investment
 - CIP is an important consideration, whether requiring compliance or not

PMU Status and Future Needs

- PMUs are widely deployed with an ever-increasing list of applications
- Integration of inverter-based resources (IBRs) is driving increased need and interest in advanced measurement systems

Thank you.

