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information in this report.  
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EXECUTIVE SUMMARY 
Planning for reliability for structured capacity markets and vertically integrated utilities requires formal 
quantification of the reliability contribution of each resource class in order to ensure compliance with 
reliability standards. The reliability contribution of resource classes is generally expressed as its Effective 
Load Carrying Capability (ELCC).  In energy-only markets such as ERCOT, while there is currently no capacity 
accreditation scheme, it is still important that market participants have insight into the reliability 
contribution of each resource class. ERCOT contracted with PowerGEM to perform an ELCC study to 
quantify the contribution of each resource class to Planning Reserve Margins (PRM) reported in ERCOT’s 
Report on Capacity, Demand and Reserves in the ERCOT Region (CDR). The use of the ELCC approach has 
been codified in ERCOT’s Nodal Protocols.1 

ELCCs are generally calculated relative to the 1-day-in-10-years (0.1 LOLE) reliability standard used in most 
of North America. In 2024, ERCOT introduced a multi-pronged reliability standard. This standard requires 
compliance with the 0.1 LOLE metric but also puts limitations on the magnitude and duration of individual 
reliability events. The maximum modeled average hourly firm load shed is a parameter to be calculated 
and updated by December of each year based on guidance from Public Utility of Texas staff and 
Transmission Operations. The longest firm load shed event must be shorter than 12 hours. An exceedance 
threshold of one percent is applied to both the magnitude and duration criteria, meaning that no more 
than one percent of events can exceed the criteria thresholds.2 The standard was not adopted until after 
the ELCC study completion. Therefore, for this study, SERVM was calibrated to 0.1 LOLE for the summer 
and winter seasons separately, but the seasonal LOLE will be explored for subsequent studies.  

ELCCs are calculated via simulations of the islanded 2026 ERCOT system using PowerGEM’s Strategic 
Energy and Risk Valuation Model (SERVM). The ELCC of a resource class is not a static value; it is contingent 
on the penetration of the resource class, underlying load characteristics, and interactions with other 
resource classes among other variables. To capture this dynamic, PowerGEM simulated dozens of 
portfolios with combinations of different resource penetration levels and technology attributes, and 
adjustments were made to load or capacity to keep reliability at the target. The ratio of the resource 
adjustment required to meet the reliability target to the capacity of the variable energy portfolio 
determines the portfolio ELCC. This process is illustrated in Figure ES1Error! Reference source not found.. 

 
1 See Protocol Sections 3.2.6.2 and 3.2.6.4, https://www.ercot.com/files/docs/2024/06/28/03-010125_Nodal.docx 
2 See the adopted standard: 54584_106_1426419.PDF 

https://interchange.puc.texas.gov/Documents/54584_106_1426419.PDF
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Figure ES1. ELCC Methodology 

 

For the 2024 ELCC study, PowerGEM explored alternative methodologies to capture interactions between 
different durations of storage resources. Fully analyzing the possible ranges of ERCOT portfolios consisting 
of wind, solar, and 4 different duration batteries in SERVM would require a 6-dimensional matrix of 
hundreds of thousands of scenarios. Given the intractability of analyzing such a matrix, PowerGEM 
proposed constructing a tool to quantify the discrete contribution of any storage portfolio up to 30GW of 
capacity consisting of any mix of durations for any combination of wind and solar capacity, each up to 60 
GW. This tool is built in Excel but is calibrated to SERVM simulations to ensure constraints such as charging 
limitations and cycle efficiency as well as beneficial attributes such as the ability to serve ancillary services 
factor into the ELCC quantification.  

A challenge with ELCC calculations is whether resources are given credit for their average or their marginal 
contribution to reliability. The sum of average ELCC contributions for all resources in a system that is 
precisely compliant with the reliability requirement will be equal to: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿 ∗ (1 + 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅). 

This is generally informative for planners to determine how long or short a given system will be. The 
marginal ELCC for every resource class is valuable to determine the contribution of the next resource to 
the system.  This is generally informative for planners to determine how long or short a given system will 
be.  

The marginal ELCC for every resource class determines the reliability contribution of the next resource to 
the system (which is useful information for the market), as well as helps distinguish the difference in 
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reliability value of incremental energy during the hours with highest risk of unserved energy versus other 
hours of the day, a new reporting requirement for the CDR.  

The Figure ES2 illustration provides visual guidance on the application of average and marginal ELCCs. The 
sum of all the average ELCCs is a stacking of the reliability contribution of all classes of resources and shows 
the aggregate contribution relative to the peak load forecast. 

Figure ES2. Visual ELCC Example 

 

Output of resources during critical hours – defined as either Expected Unserved Energy (EUE) hours or 
hours where incremental energy would reduce EUE – approximates marginal ELCC.  

The approach used for this ELCC study was to match average ELCC to summer afternoon risk periods and 
marginal ELCC to summer evening risk periods. This is not a perfect mapping since ELCC recognizes that 
the contribution to reliability is not a snapshot of conditions in any specific hour, but rather the reduction 
in net load peak that occurs over several hours. With the 2025 solar penetration, it is expected that the 
solar output during the gross load peak has minimal contribution to reliability (since all reliability problems 
are expected to be concentrated in the evening) so neither the average ELCC nor the marginal ELCC 
recognizes the full output of solar during gross peak periods.  

Winter average ELCCs are mapped to both morning and evening winter risk periods as the timing of the 
net load peaks are essentially identical to the gross load peaks.  
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ELCC RESULTS 
Given reliability need has historically been concentrated in summer afternoon hours, the reliability 
contribution of solar has been assumed to be quite high – the reliability credit for solar in past CDRs has 
been 74-100% between 2010-2024. The shift to winter reliability and the large additions of solar capacity 
have significantly lowered the projected contribution of marginal solar additions in the summer, as shown 
in Figure ES3. In the winter, solar output is minimal in very early morning hours and very late evening hours 
during reliability risk periods. As solar penetration grows, incremental solar capacity does not contribute 
significantly to reliability. 

Figure ES3. Summer Evening Solar ELCCs 

 

Wind resource reliability contributions are more stable, as shown in Figure ES4, but are also subject to 
further declines in ELCC with penetration as the risk of large area wind lulls have a larger impact on 
reliability. 
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Figure ES4. Summer Evening Wind ELCCs 

 

Solar morning and afternoon winter ELCCs for penetrations expected by 2026 are less than 2%, and wind 
ELCCs in the winter are generally less than 32%. 

Storage summer afternoon ELCCs indicate that 3 hours or longer duration is required to provide 91%+ 
ELCC over the next 5-year planning window. The summer evening storage ELCCs for storage with 5 hour 
or longer duration is required to provide 74%+ ELCC over the same planning window. Storage winter 
morning and evening ELCCs indicate that 5 hours or longer duration is required to provide 76%+ ELCC over 
the next 5-year planning window.  

From an aggregate planning standpoint, significant solar and storage resources are being added over the 
next 5 years as shown in Figure ES5. However, the total reliability contribution of system resources is only 
rising modestly while load is projected to grow much faster. The composite system ELCC MW shown in 
Figure ES6 uses estimated values for the conventional fleet, so it does not provide precise indication of the 
reliability value of the portfolio, but it does highlight the potential gap between reliability capability of the 
system and the growing load forecast. 
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Figure ES5. Resource Portfolio Capacities 

 

Figure ES6. Seasonal Portfolio ELCC Versus “1 + Planning Reserve Margin” Times Peak Load 

 

In addition to distinguishing reliability value by technology, the location of resources affects reliability 
value. The following variables were also tested as part of this study: 
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• Wind Locations: 
o Wind Panhandle (Wind-P) 
o Wind Coastal (Wind-C) 
o Wind Other (Wind-O) 

• Solar Locations: 
o Solar Other 
o Solar West 
o Solar Far West 

Table ES1 and  
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Table ES2 provide a snapshot of the risk period ELCCs for 2025 projected penetrations of wind, solar, and 
storage capacity distinguished by location or duration respectively. 

Marginal ELCCs of all resource classes exhibit the effects expected with large portfolios of energy-limited 
or non-dispatchable resources. As the penetration grows, the contribution of the next MW declines since 
the net load is being shifted to periods where solar or wind output is lower, or the duration need for the 
next MW of battery has grown since the initial batteries have already been deployed for the highest peak 
periods. The average ELCCs have also declined, but at a slower pace since average ELCC accounts for the 
higher contribution of the initial penetration.  

Table ES1. 2025 Summer Risk Period ELCCs 

Technology 
Installed  
Capacity  

(MW) 

Afternoon 
 ELCC  
(%) 

Evening 
 ELCC  
(%) 

Wind-C 5,678 30.83% 16.37% 
Wind-O 29,796 15.68% 8.33% 
Wind-P 4,669 33.58% 17.83% 

Solar Other 22,922 36.14% 7.32% 
Solar West 7,000 27.21% 5.51% 

Solar Far West 3,653 27.21% 5.51% 
Storage 1-hour 6,898 70.72% 13.71% 
Storage 2-hour 7,651 93.29% 27.43% 
Storage 3-hour 202 93.29% 41.14% 
Storage 4-hour 247 93.29% 54.85% 
Storage 5-hour 20 93.29% 68.15% 
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Table ES2. 2025 Winter Risk Period ELCCs 

Technology 
Installed  
Capacity  

(MW) 

Morning 
ELCC 
(%) 

Evening 
 ELCC 
(%) 

Wind-C 5,678 32.56% 32.56% 
Wind-O 30,296 29.90% 29.90% 
Wind-P 4,835 15.20% 15.20% 

Solar Other 24,867 1.95% 1.95% 
Solar West 7,934 2.59% 2.59% 

Solar Far West 3,653 2.59% 2.59% 
Storage 1-hour 7,847 25.46% 23.14% 
Storage 2-hour 10,239 60.47% 56.15% 
Storage 3-hour 202 86.08% 90.42% 
Storage 4-hour 401 93.37% 93.37% 
Storage 5-hour 20 93.37% 93.37% 
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KEY MODEL INPUTS AND PARAMETERS 

A. MODELING FRAMEWORK 

This study was performed using the Strategic Energy & Risk Valuation Model (SERVM). Like other reliability 
models, SERVM probabilistically evaluates the reliability implications of any given portfolio.  It does so by 
simulating generation availability, load profiles, load uncertainty, inter-regional transmission availability, 
and other factors. SERVM ultimately generates standard reliability metrics such as loss-of-load expectation 
(LOLE), loss-of-load hours (LOLH), and expected unserved energy (EUE).  Unlike other reliability modeling 
packages, however, SERVM simulates economic outcomes, including hourly generation dispatch, ancillary 
services, and price formation under both normal conditions and emergency operating procedures.   

The multi-area economic and reliability simulations in SERVM include an hourly chronological economic 
dispatch that is subject to inter-regional transmission constraints. Each generation unit is modeled 
individually, characterized by its economic and physical characteristics. Planned outages are scheduled in 
off-peak seasons, consistent with standard practices, while unplanned outages and derates occur 
probabilistically using historical distributions of time between failures and time to repair. Load, hydro, 
wind, and solar conditions are modeled based on profiles consistent with individual historical weather 
years. Dispatch limitations and limitations on annual energy output are imposed on certain types of 
resources such as demand response, hydro generation, and seasonally mothballed units. 

The model implements a week-ahead and then multi-hour-ahead unit commitment algorithm considering 
the outlook for weather and planned generation outages. In the operating day, the model runs an hourly 
economic dispatch of baseload, intermediate, and peaking resources, including an optimization of 
transmission-constrained inter-regional power flows to minimize total costs. During most hours, hourly 
prices reflect marginal production costs, with higher prices being realized when import constraints are 
binding. During emergency and other peaking conditions, SERVM simulates scarcity prices that exceed 
generators’ marginal production costs.  

To examine a full range of potential reliability outcomes, we implement a Monte Carlo analysis over a large 
number of scenarios with varying demand and supply conditions. Because reliability events occur only 
when system conditions reflect unusually high loads or limited supply, these simulations must capture 
wide distributions of possible weather, load growth, and generation performance scenarios. This study 
incorporates 44 weather years, 5 levels of economic load forecast,3 and 25 draws of generating unit 
performance for a total of 5,500 iterations for each simulated case. Each individual iteration simulates 
8,760 hours for the study year of 2026.   

 
3 The five discrete levels of load forecast error we model are equal to 0%, +/−2%, and +/−4% above and below the 
ERCOT load forecast. 
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To properly capture the magnitude and impact of reliability conditions during extreme events, emergency 
operating procedures must be faithfully replicated. For this reason, SERVM simulates a range of emergency 
procedures, accounting for energy and call-hour limitations, dispatch prices, operating reserve depletion, 
dispatch of economic and emergency demand-response resources, and administrative scarcity pricing.4 

B. STUDY YEAR AND TOPOLOGY 

The ELCC study analyzed the expected conditions and resources in 2026. ERCOT was modeled as an 
island and all generation is assumed to be fully deliverable within the ERCOT region.  

C. COMPONENTS OF SUPPLY AND DEMAND 

Load and resource accounting for the 2026 system is based on ERCOT’s conventions in the May 2024 
Capacity, Demand and Reserves (CDR) Report, as summarized in Table 1.5 The fleet summary developed 
by ERCOT staff for the CDR Report was the most recent data available when this study was developed.6 
Any units coming online before June 2026 were included in the study and assumed to come online in 
January of the year, and any units coming only after June 2026 were excluded in the study to maintain a 
homogeneous resource mix for the study year. Firm peak load is reduced for non-controllable load 
resources (LRs), 10-minute and 30-minute emergency response service (ERS), and Transmission/ 
Distribution Service Providers (TDSP) energy efficiency and load management. All wind, solar, and storage 
capacity was removed from the base case used for the ELCC surface development, and perfect combustion 
turbine capacity – capacity with no outages or ramping limitations – was added until the LOLE was 0.1 for 
the summer and winter seasons.    

  

 
4 Similar to other reliability modeling exercises, our study is focused on resource adequacy as defined by having 
sufficient resources to meet peak summer load.  As such, we have not attempted to model other types of outage or 
reliability issues such as transmission and distribution outages, common mode failures related to winter weather 
extremes, or any potential issues related to gas pipeline constraints or delivery problems. 
5 https://www.ercot.com/gridinfo/resource 
6 In general, the May 2024 CDR is the authoritative source, the following assumptions were used for including 
certain resource types: (1) switchable units – include as internal resources, with the units that are committed off-
system excluded from our model. (2) unit additions/retirements – include or exclude starting in the CDR-specified 
year. (3) inactive planned – excluded from model. 
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Table 1. Supply and Demand Summary for 2026 Study Year 

 ERCOT System 

Peak Load (MW) 86,158 
Load Reduction (MW) 2,622 
LRs serving RRS (MW) 1,115 
LRs serving ECRS (MW) 250 
10-Minute and 30-Minute ERS (MW) 885 
TDSP Curtailment Programs (MW) 372 
Supply   
Conventional Generation (MW) 67,079 
Hydro (MW) 455 
Wind (MW)* 41,642 
Solar (MW)* 53,501 
Storage (MW)* 23,243 
PUNs (MW) 2,760 
Note: Energy Efficiency Programs are already removed from the modeled peak 
load and are not represented in the modeled load reduction programs (ERCOT 
Aggregate = 3,497 MW in 2026 Study Year) 
*Nameplate Capacity of Unit Category 

On the demand side, this study started with ERCOT’s zonal hourly load shapes under many possible 
weather patterns and peak load forecast for 2026.  PowerGEM simulated 44 weather years, from 1980 
through 2023 (with corresponding wind and solar conditions from the same years).  When calculating 
expected values, an equal probability for each year’s weather was assumed.7   

D.  DEMAND SHAPES AND WEATHER UNCERTAINTY MODELING 
We represented weather uncertainty in the projected ERCOT 2026 peak load by modeling 44 load forecasts 
based on 44 historical weather patterns from 1980-2023. The calculated 50/50 loads for the 2026 study 
year is provided in Table 2. The 50/50 peak demand forecast includes load growth from large industrial 
loads including data centers and large flexible loads which have signed interconnection agreements with 
their Transmission Service Providers (TSPs). The impact of accounting for the TSP officer letter loads on 
ELCCs will be investigated during our 2025 studies.  

Table 2. Seasonal 50/50 Peak Before and After DC and LFL Additions 

Scenario Total Internal Demand (MW) 
Winter Summer 

Before DC and LFL Additions 78,021 88,037 
After DC and LFL Additions 86,051 99,550 

 

 
7 Applying equal probabilities is reasonable given that so many years can be taken to be fairly representative of the 
underlying distribution, assuming there is not a trend in the average weather or in the variability of weather.  
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 Figure 1 shows the variability in summer and winter peak load across the 44 weather years simulated for 
this study. The most severe summer peak is 3.8% above the normal weather summer peak while the most 
severe winter peak is 24.7% above the normal weather winter peak.  

Figure 1. Seasonal Peak Load Variance by Weather Year 

 

E. NON-WEATHER DEMAND FORECAST UNCERTAINTY AND FORWARD PERIOD  

The load forecast errors were updated to reflect a 2-year ahead look that reflects that load may grow 
faster or slower than expected. As shown in the right chart of Figure 2, we assume that non-weather load 
forecast error (LFE) is normally distributed with a standard deviation of 0.43% on a 1-year forward basis, 
increasing by 0.66% with each additional forward year.8 The distribution included no bias or asymmetry in 
non-weather LFEs. The left-hand chart of Figure 2 shows the five discrete levels of LFE we modeled, equal 
to 0%, +/−2%, and +/-4% above and below the forecast.  The largest errors are the least likely, consistent 
with a normal distribution.   

 
8 This assumed LFE is a standard assumption that we developed in lieu of any ERCOT-specific analysis, which would 
require either a longer history of load forecasts in ERCOT or a new analysis developed out of ERCOT’s peak load 
forecast, neither of which are currently available.  
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Figure 2. Non-Weather Load Forecast Error 

 

F. GENERATION RESOURCES 
The economic, availability, ancillary service capability, and dispatch characteristics of all generation units 
in the ERCOT fleet are modeled, using unit ratings and online status consistent with ERCOT’s May 2024 
CDR report.  

1. CONVENTIONAL GENERATION OUTAGES 

A major component of reliability analyses is modeling the availability of supply resources after considering 
maintenance and forced outages.  We model forced and maintenance outages of conventional generation 
units stochastically. Partial and full forced outages occur probabilistically based on distributions accounting 
for time-to-fail, time-to-repair, startup failure rates, and partial outage derate percentages.  Maintenance 
outages also occur stochastically, but SERVM accommodates maintenance outages with some flexibility to 
schedule maintenance during off-peak hours. Planned outages are differentiated from maintenance 
outages and are scheduled in advance of each hourly simulation. Consistent with market operations, the 
planned outages occur during low demand periods in the spring and fall, such that the highest coincident 
planned outages occur in the lowest load days. This outage modeling approach allows SERVM to recognize 
some system-wide scheduling flexibility while also capturing the potential for severe scarcity caused by a 
number of coincident unplanned outages.  

We develop distributions of outage parameters for time-to-fail, time-to-repair, partial outage derate 
percentages, startup probabilities, and startup time-to-repair from historical Generation Availability Data 
System (GADS) data for individual units in ERCOT’s fleet, supplemented by asset class average outage rates 
provided by ERCOT where unit-specific data were unavailable. Table 3. Equivalent Forced Outage Rates by 
Asset Class summarizes fleet-wide and asset-class outage rates, including both partial and forced outages. 

Table 3. Equivalent Forced Outage Rates by Asset Class 

Unit Type EFOR (%) 
Gas 11.0 

Biomass 2.4 
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Coal 27.9 
Nuclear 2.1 
Storage 5.0 

Fleet Weighted Average 11.4 

Additional forced outage probabilities were modeled for cold weather. Significant calibration work was 
performed to replicate outages observed in Winter Storms Uri and Elliott.9 Based on forecasted 
improvement in cold weather performance by ERCOT, the incremental forced outage probability during 
extreme cold weather was reduced by 85% for the 2024 studies. The effect of this change is that during 
the coldest temperatures, the conventional fleet is expected to have a percentage on forced outage equal 
to its historical forced outage rate plus 15% of the incremental outages observed during the two most 
extreme winter events in history, as shown in Figure 3. 

Figure 3. Cold Weather Forced Outage Modeling 

 

2. PRIVATE USE NETWORKS 

We represent generation from Private Use Networks (PUNs) in ERCOT on a net generation basis, where 
the net output increases with the system portion of peak load consistent with historical data and as 
summarized in Figure 4. At any given load, the realized net PUN generation has a probabilistic quantity, 
with 10 different possible quantities of net generation within each of 10 different bands of system load.10 

 
9 More details on modeling weather events and associated thermal outage probabilities is available at 
https://www.ercot.com/files/docs/2023/08/23/4__Weather-based_Thermal_Outage_Modeling.pptx. 
10 Hourly net PUN output data by zone gathered from ERCOT.  
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Each of the 10 possible quantities has an equal 10% chance of materializing, although the figure reports 
only the lowest, median, and highest possible quantity. The probabilistic net PUN supply curve was 
developed based on aggregate hourly historical net output data within each range of peak load 
percentage. During scarcity conditions in the simulations with load at or above 88% of normal peak load, 
PUN output produces at least 2,306 MW of net generation with an average of 2,694 MW.  

Figure 4. PUN Net Generation 

 

3. INTERMITTENT WIND AND SOLAR 

We modeled a total quantity of intermittent wind and solar photovoltaic resources that reflects what 
ERCOT reported in the May 2024 CDR Report. Aggregate wind and solar profiles were created that used 
the same profile breakdown as the base case and then were used for simulations along the surface. 
Technology specific profiles were created by aggregating the appropriate profiles from the base case to 
obtain one average profile for each technology.  

We developed our system-wide hourly wind profiles by aggregating 44 years of synthesized hourly wind 
shapes for each location of individual units across the system wind shapes over 1980 to 2023, as provided 
by ERCOT staff.11  Figure 5 plots the average wind output by season and time of day, showing the highest 
output overnight and in spring months with the lowest output in mid-day and in summer months.  The 
overall capacity factor for wind resources was 38.9%. 

 
11 ERCOT obtained the original wind profiles from UL (formerly AWS Truepower).   
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Figure 5. Average Wind Output by Season and Time of Day 

 

We similarly model hourly solar PV output based on hourly output profiles that are specific to each 
weather year, as aggregated from unit level or county-specific synthesized output profiles over years 1980 
to 2023.12  In aggregate, solar resources had a capacity factor of 26.5% across all years. 

 

ELCC SURFACE STUDY APPROACH 

This study focuses on calculating the ELCC of renewable and energy storage portfolios. The ELCC of a 
variable energy resource is the capacity value (expressed in MW) associated with the resource’s reliability 
contribution to the system. The ELCC can also be measured as a percentage of the calculated capacity 
value relative to the nameplate capacity value of the resource.  The process used in this study consists of 
the following steps: 

1. The first step in the portfolio ELCC analysis was to calibrate the base case to a 0.1 LOLE target in 
both the summer and winter. The study year chosen was 2026 and involved removing all the 
variable energy resources from ERCOT and some conventional generation and adding perfect 
capacity – capacity with no outages or ramping limitations – until the summer and winter reliability 
risk is at 0.1 LOLE individually.  

 
12 Individual county and site-specific output profiles for 1980-2021 were provided by ERCOT, obtained through UL 
(formerly AWS Truepower). 
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2. Starting with the base case at 0.1 LOLE above, solar and wind capacity of 60 GW each was added 
to the system, which improved the LOLE. Perfect capacity was removed until the reliability risk in 
the summer and winter was reduced to 0.1 LOLE. The MW value of perfect capacity removed was 
equal to the average ELCC of the added variable energy resource portfolio. Figure 6, below, 
represents the ELCC calculation process. 

Figure 6. ELCC Methodology  

 

The ELCC scenarios analyzed can be summarized as a combination of the following capacity vectors: 

• Solar capacity (MW): 0 - 60 GW 
• Wind capacity (MW): 0 - 60 GW 

For example, Table 4 represents the matrix of all portfolios modeled in SERVM for a solar-wind surface. 
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Table 4. Summer Portfolio Capacity Contribution 

  

The ELCC matrices were constructed for varying wind and solar generation levels without storage in the 
system. These compact matrices were interpolated at step-sizes of 1,000 MW for both wind and solar 
dimensions to generate a wind-solar surface with monotonically decreasing first-order derivatives. The 
interpolation process utilized a bivariate spline approach, incorporating iterative triangular smoothing to 
refine the surface. Figure 7 represents a dense matrix between solar and wind in the summer. The goal of 
creating a 2-dimensional matrix of non-dispatchable resources (wind and solar) is to generate ELCCs for 
unlimited combinations of storage portfolios.  

Figure 7. Summer Evening Wind ELCCs 

 

30,000    35,000    40,000    45,000    50,000    55,000    60,000    
20,000         13,695      14,465      15,195      15,932      16,671      17,341      17,832 
25,000         14,108      14,931      15,733      16,554      17,359      18,065      18,564 
30,000         14,414      15,296      16,142      17,025      17,859      18,567      19,073 
35,000    14,664         15,611      16,518      17,328      18,239      18,935 19,445    
40,000         14,865      15,871      16,821      17,719      18,532      19,213      19,722 
45,000         15,021      16,067      17,047      17,952      18,755      19,236      19,924 
50,000         15,123      16,197      17,200 18,115         18,918      19,578      20,073 
55,000    15,170         16,265      17,287      18,214      19,023      19,691      20,193 
60,000         15,171      16,282      17,315      18,247      19,058      19,730      20,223 

Wind MW
So

la
r M
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A similar surface was also constructed for Winter. These seasonal two-dimensional surfaces are then 
leveraged using an out-of-model approach to establish storage values for each portfolio. This out-of-model 
event-based approach helps to calculate the reliable storage capacity value for any combination of storage 
duration (X GW of 2-Hr Battery, Y GW of 4-Hr Battery, Z GW of 8-Hr Battery, etc.). 

Steps for the Out-of-Model Event-Based Approach: 

1. LOLE Event Identification: 
a. SERVM identifies numerous Loss of Load Expectation (LOLE) events at 0.1 LOLE for various 

Solar and Wind penetrations. 
b. This step determines all the Loss of Load days at different Solar-Wind penetration levels. 

2. Redistribution of Loss of Load Events via the Out-of-Model Tool: 
a. The out-of-model tool redistributes Loss of Load (LoL) events to optimize using different 

storage technologies. 
b. This redistribution is guided by energy equity principles, ensuring a fair and effective 

allocation of energy resources. 
c. The tool evaluates storage technologies' capacity to meet energy demands during peak 

loss of load periods, prioritizing resource allocation to minimize unserved energy most 
equitably and efficiently. 

3. Storage Peak Shaving Capability: 
a. For each day experiencing Expected Unserved Energy (EUE), the tool calculates the peak 

shaving capability of each storage technology, as shown in Figure 8. 
b. This step ensures storage systems effectively mitigate unserved energy by reducing peak 

demand. 

Figure 8. Storage ELCC Quantification 
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4. ELCC Calculation: 
a. The average Effective Load Carrying Capability (ELCC) is calculated based on the peak 

shaving contribution of each storage duration class, as shown in Figure 9.13 
b. The marginal ELCC is determined by evaluating the average output of storage during 

storage-constrained periods, reflecting the incremental value of additional storage 
capacity. 

Figure 9. Average and Marginal ELCC Calculation 

 
 

 
5. Seasonal Weighting of Net Load Reduction and Marginal ELCC Values: 

a. The reductions in net load peak and marginal ELCC values are weighted to produce 
seasonal summer and winter ELCC estimates. 

b. This weighting is based on case probabilities derived from the stochastic model in SERVM, 
which considers variations in resource availability, demand patterns, and other 
uncertainties. 

The results from the interpolated solar-wind surface, combined with the storage dispatch tool, are used 
to generate outputs for any specific solar-wind and storage profile. The solar and wind portfolio ELCC is 
derived from the interpolated surface, while marginal contributions are integrated to quantify the specific 
impact of solar and wind at various penetration levels. These contributions are then allocated based on 
location, such as Solar-West and Solar-Non-West.  

 
13 As discussed in the executive summary, average and marginal ELCC were mapped to risk periods based on closest 
alignment.  
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To ensure alignment with SERVM results, penalty factors were calibrated and applied to the ELCC values 
obtained from the Excel storage dispatch model, as shown in  

 
Figure 10. These penalty factors account for both additional benefits, such as ancillary service 
contributions and interactions with other resources, and constraints, including starting state of charge 
(SOC) and outage impacts on other resources. This calibration process ensures a more accurate reflection 
of system dynamics and resource limitations.  

 
Figure 10. Seasonal Penalty Factors 

 

A final adjustment was made for forced outage risk on the batteries. Given variable and uncertain 
performance risk on batteries, we assumed a 5% impact on ELCC for batteries for all results published. As 
more performance data for batteries becomes available, future ELCC studies can more robustly measure 
the impact of outage risk on reliability contribution. 
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RESULTS 
SERVM was calibrated seasonally to 0.1 LOLE for the summer and winter seasons separately. As the 
renewable portfolio penetration was increased, perfect capacity was removed from the system to 
calibrate it back to 0.1 seasonal LOLE.  

Given reliability need has historically been concentrated in summer afternoon hours, the reliability 
contribution of solar has been assumed to be quite high – the reliability credit for solar in past CDRs has 
been 74-100% between 2010-2024. The shift to winter reliability and the large additions of solar capacity 
have significantly lowered the projected contribution of marginal solar additions in the evenings in 
summer, as shown in Figure 11. Solar output is minimal in the winter in very early morning hours and very 
late evening hours where reliability risk occurs. As solar penetration continues to grow, incremental solar 
capacity does not contribute much to reliability.  

Figure 11. Summer Evening Solar ELCCs 

 

Figure 12 shows summer wind resource reliability contributions are more stable but are also subject to 
further declines in evening ELCCs with penetration as the risk of large area wind lulls have a larger impact 
on reliability.  
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Figure 12. Summer Evening Wind ELCCs 

 

The resource class ELCC results mentioned above were also decomposed into technology or location 
specific ELCCs. Renewable profiles for each zone were created by calculating a weighted average of all the 
county level profiles for the zone or technology being analyzed. A 1-GW marginal unit was added at 2025 
penetrations to calculate the following ELCCs: 

• Wind-C 
• Wind-O 
• Wind-P 
• Solar Other 
• Solar West 
• Solar Far West 

Table 5 and 

Technology 
Installed  
Capacity  

(MW) 

Afternoon 
ELCC  
(%) 

Evening 
ELCC  
(%) 

Wind-C 5,678 30.83% 16.37% 
Wind-O 29,796 15.68% 8.33% 
Wind-P 4,669 33.58% 17.83% 
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Solar Other 22,922 36.14% 7.32% 
Solar West 7,000 27.21% 5.51% 

Solar Far West 3,653 27.21% 5.51% 
Storage 1-hour 6,898 70.72% 13.71% 
Storage 2-hour 7,651 93.29% 27.43% 
Storage 3-hour 202 93.29% 41.14% 
Storage 4-hour 247 93.29% 54.85% 
Storage 5-hour 20 93.29% 68.15% 

 

Table 6 provide the summer and winter risk period ELCC results for each of the technology and location 
specific tests that were performed at the 2025 penetrations. These tables also show the results for 1-to-5 
hour duration storage resources. 

 

 

Table 5. 2025 Summer Risk Period ELCCs for Technology or Location Specific Results 

Technology 
Installed  
Capacity  

(MW) 

Afternoon 
ELCC  
(%) 

Evening 
ELCC  
(%) 

Wind-C 5,678 30.83% 16.37% 
Wind-O 29,796 15.68% 8.33% 
Wind-P 4,669 33.58% 17.83% 

Solar Other 22,922 36.14% 7.32% 
Solar West 7,000 27.21% 5.51% 

Solar Far West 3,653 27.21% 5.51% 
Storage 1-hour 6,898 70.72% 13.71% 
Storage 2-hour 7,651 93.29% 27.43% 
Storage 3-hour 202 93.29% 41.14% 
Storage 4-hour 247 93.29% 54.85% 
Storage 5-hour 20 93.29% 68.15% 

 

Table 6. 2025 Winter Risk Period ELCCs for Technology or Location Specific Results 

Technology 
Installed  
Capacity  

(MW) 

Morning 
ELCC 
(%) 

Evening 
 ELCC  
(%) 

Wind-C 5,678 32.56% 32.56% 
Wind-O 30,296 29.90% 29.90% 
Wind-P 4,835 15.20% 15.20% 

Solar Other 24,867 1.95% 1.95% 
Solar West 7,934 2.59% 2.59% 

Solar Far West 3,653 2.59% 2.59% 
Storage 1-hour 7,847 25.46% 23.14% 
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Storage 2-hour 10,239 60.47% 56.15% 
Storage 3-hour 202 86.08% 90.42% 
Storage 4-hour 401 93.37% 93.37% 
Storage 5-hour 20 93.37% 93.37% 

 

The results from the interpolated solar-wind surface, combined with the storage dispatch tool, were used 
to generate outputs for the forecasted solar, wind, and storage penetrations for the next 5 years. Figure 
13 and Figure 14 provide the summer solar and wind risk period ELCCs overtime for each technology. The 
projected contribution of solar resources is expected to continue to decline over the next 5 years as we 
shift to winter reliability risk and continue to add large amounts of solar capacity to the system. Summer 
wind ELCCs and penetrations are more stable compared to solar. 

 

 

Figure 13. Summer Solar Location Specific Afternoon and Evening ELCCs Over the Next 5 Years 

 

Figure 14. Summer Wind Location Specific ELCCs Over the Next 5 Years 
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Figure 15 and Figure 16 provide the summer storage ELCCs for the next 5 years by duration. Summer 
afternoon storage ELCCs are expected to remain high over the next 5-year planning window while shorter 
duration resources contribution will continue to decline. Summer evening storage ELCCs indicate that 5 
hours or longer duration is required to provide greater than 85% ELCCs over the next 5-year planning 
window.  

Figure 15. Summer Storage Afternoon ELCCs of Varying Duration Over the Next 5 Years 
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Figure 16. Summer Storage Evening ELCCs of Varying Duration Over the Next 5 Years 

  

Figure 17 -Figure 20 provide the winter ELCCs for solar, wind, and storage, respectively. Winter morning 
and evening solar ELCCs over the next 5 years are low and continue to decline as penetration increases. 
Wind ELCCs stay relatively constant over the 5-year period with very slight declines in reliability 
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contribution. The winter morning and evening storage ELCCs all show a slow decline in reliability 
contribution across all durations.  

Figure 17. Winter Solar Location Specific Morning and Evening ELCCs Over the Next 5 Years 

 

Figure 18. Winter Wind Location Specific Morning and Evening ELCCs Over the Next 5 Years 

 

Figure 19. Storage Winter Morning ELCCs of Varying Duration Over the Next 5 Years 
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Figure 20. Storage Winter Evening ELCCs of Varying Duration Over the Next 5 Years 

 



35 
 

CONCLUSIONS AND NEXT STEPS 
The out-of-model approach employed in this ELCC study marks an improvement over past studies because 
it allows for consideration of multiple storage durations. While the out-of-model approach for storage 
ELCC calculations does not consider constraints such as starting state of charge or ancillary service 
eligibility, results were calibrated with SERVM simulations to ensure these factors were considered in the 
final ELCC values. 

The authors recognize the value of ELCC stability for all resource classes for signaling the reliability value 
of resources to those planning changes to the electric system. However, the reliability contribution of 
wind, solar, and storage are contingent not only on the penetration of each class, but on the composition 
of load in ERCOT and the performance characteristics of the conventional fleet. For example, electric 
heating loads, new large load responses to market price signals, or thermal generator winter performance 
could differ from current expectations and thereby significantly change the reliability contribution of the 
variable energy resource portfolio. Uncertainty in how these load and resource characteristics evolve in 
the future warrant monitoring of ELCC suitability for future forecast periods and their periodic re-
estimation if needed. 
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APPENDIX 

A. GENERATION RESOURCES 

1. HYDROELECTRIC 

We include 577 MW of hydroelectric resources, consistent with ERCOT’s May 2024 CDR report. We 
characterize hydro resources using eight years of hourly data over 2020-2023 provided by ERCOT, and 44 
years of monthly data over 1980-2023 from Form EIA-923.14  For each month, SERVM uses four parameters 
for modeling hydro resources, as summarized in Figure A1: (1) monthly total energy output, (2) monthly 
maximum output, (3) daily maximum output, and (4) daily minimum output, as estimated from historical 
data.  

When developing hydro output profiles, SERVM will first schedule output up to the monthly maximum 
output into the peak hours but will schedule some output across all hours based on historically observed 
output during off-peak periods up to the total monthly output. During emergencies, SERVM can schedule 
up to 49.25 MW in drought conditions and 116.15 MW for all other months.  

Figure A1. Historical Hydro Energy Relationships 

 

 
14 https://www.eia.gov/electricity/data/eia923/ 
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2. FUEL PRICES  

We used the 2023 Annual Energy Outlook reference case fuel forecasts for the 2026 study year. The 
average fuel prices used in the study are presented in Table A1. 

Table A1. ERCOT Fuel Forecasts 

Coal Fuel 
Price 

($/MMBtu) 
Gas Fuel 

Price 
($/MMBtu) 

Diesel Fuel 
Price 

($/MMBtu) 
2.21 3.41 16.95 

B. ANCILLARY SERVICE MODELING 
Ancillary services are necessary to maintain the reliability of the ERCOT System. Ancillary services are 
procured to ensure sufficient resource capacity is online or able to be brought online in a timely manner 
to balance the variability that cannot be covered by the 5-minute energy market. The four types of 
Ancillary Services in ERCOT currently are: regulation up service, regulation down service, responsive 
reserve service, and non-spinning reserve service. ERCOT typically maintains a minimum of 3,000 - 4,000 
MW of online upward reserves in order to protect reliability in the event of a disturbance or to provide 
the necessary flexibility to follow potentially volatile net load patterns. SERVM maintains these online 
upward reserves when adequate resources are available. When resource availability declines during 
simulations, emergency operating procedures are activated in SERVM to deploy reserves and call 
emergency resources such as demand response. Emergency operating procedures are discussed in more 
detail in Section C.  

C. SCARCITY PRICING AND DEMAND RESPONSE MODELING 

Several types of demand response participate directly or indirectly in ERCOT’s market, including 
Emergency Response Service (ERS), Load Resources, and Price Responsive Demand. These various 
resource types differ from each other in whether they are triggered by price-based or emergency actions, 
and restrictions on availability and call hours. Table A2 summarizes the resources, explaining how we 
modeled their characteristics and their assumed marginal costs when utilized, and how they were 
accounted for in the reserve margin. 
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Table A2. Summary of Demand Resource Characteristics and Modeling Approach 

Resource 
Type 

Quantity 
(MW) Modeling Approach 

Adjustments 
to ERCOT 

Load Shape 

Reserve Margin 
Accounting 

Energy 
Efficiency 

3,497 Not explicitly modeled None Load reduction 

Firm Fuel 
Supply Service 

141 Triggered based on wind chill None None 

Distribution 
Voltage 

Reduction 
701 Emergency trigger before EEA Level 1 None None 

30-Minute ERS 875 Emergency trigger before EEA Level 1 None Load reduction 

10-Minute ERS 10 Emergency trigger before EEA Level 1 None Load reduction 

Load 
Management 

372 Emergency trigger at EEA Level 1 None Load reduction 

Non-
Controllable 

LRs 
1,115 

Economically dispatch for Responsive 
Reserve Service (most hours) or energy 

(few peak hours). Emergency 
deployment at EEA Level 2 

None Load reduction 

Controllable 
LRs 

 Currently no controllable LRs modeled 
in ERCOT n/a n/a 

4 CP 
Reductions 

1,700 Not explicitly modeled None None; excluded from 
reported peak load 

Price 
Responsive 

Demand 
Variable Not explicitly modeled None None; excluded from 

reported peak load 

Sources and Notes: 
 Developed based on analyses of recent DR participation in each program and input and data from ERCOT staff.  

 
1. EMERGENCY RESPONSE SERVICE  

Emergency response service (ERS) includes two types of products, 10-minute and 30-minute (weather 
sensitive and non-weather sensitive) ERS, with the quantity of each product available changing by time of 
day and season as shown in Table A3. The quantity of each product by time of day and season is 
proportional to the quantities most recently procured over the four seasons of year 2023 and 2024, with 
the 2026 summer peak quantity assumptions provided by ERCOT.15 Demand resources enrolled under ERS 
are dispatchable by ERCOT during emergencies but cannot be called outside their contracted hours and 
cannot be called for more than twenty-four hours total per season.  

 
15 For total ERS procurement quantities by product type and season, see https://www.ercot.com/mp/data-
products/data-product-details?id=NP3-144-M 
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Table A3. Assumed ERS Quantities Available in 2026 

 
Sources and Notes:  
 Total available ERS MW for 2026 June-Sept. TP4 provided by ERCOT staff. 
 ERS 10-min and 30-min MW for other contract periods scaled proportionally to the study year quantities based 

on availability in 2023-2024. 

2. LOAD RESOURCES PROVIDING REAL-TIME RESERVES  

Consistent with ERCOT’s published minimum Responsive Reserve Service (RRS) requirements, we modeled 
1,115 MW of non-controllable load resources (LRs) that actively participate in the RRS market.16  All 1,115 
MW were modeled as responsive to Energy Emergency Alert, Level 2.  

 

 
16 Currently, 1,400 MW is the maximum quantity of non-controllable LRs that are allowed to sell responsive reserve 
service (RRS) and is the clearing quantity in the vast majority of hours.  
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3. FIRM FUEL SUPPLY SERVICE 

The Firm Fuel Supply Service (FFSS) is an ERCOT service that was developed to address reliability during 
extreme cold weather conditions and is a firm-fuel product that provides additional grid reliability and 
resiliency during extreme cold weather. For this study, the selected approach estimated temperature-
based decreases in fuel limitation outages for units providing FFSS. A fuel limitation outages trend line was 
constructed from historical outages, as shown in Figure A2, that assumes that about 4.5% of the fleet-wide 
outages were avoided by procuring FFSS. This assumption translates to a roughly 141 MW improvement 
in outages at 14 degrees and about 50 MW improvement in outages at 25 degrees. The outage 
improvement is represented within SERVM as a 141 MW perfect gas unit that provides a linear outage 
reduction improvement ranging from 50 to 141 MW as wind chill temperature decreases.  

Figure A2. Firm Fuel Supply Service Historical Outage Analysis 

 

4. DISTRIBUTION VOLTAGE REDUCTION 

Distribution Voltage Reduction (DVR) is a voluntary effort to reduce system demand, in response to a 
temporary decrease in available electricity supply, by systematically lowering the operating voltage on the 
distribution system. Voltage reduction is performed at ERCOT’s instruction before an EEA Level 1 event is 
reached. This is modeled within SERVM as a 701 MW unit with no deployment limitations. The capacity 
amount is based on previous information requests that ERCOT sent to Transmission Operators regarding 
DVR program attributes and expected load reductions based on peak load scenarios.  

5. POWER BALANCE PENALTY CURVE 

The Power Balance Penalty Curve (PBPC) is an ECOT market mechanism that introduces administrative 
scarcity pricing during periods of supply scarcity. The PBPC is incorporated into the security constrained 
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economic dispatch (SCED) software as a set of phantom generators at administratively specified price and 
quantity pairs, as summarized in the blue curve in Figure A3. Whenever PBPC is dispatched for energy, it 
reflects a scarcity of supply relative to demand in that time period that, if sustained for more than a 
moment, will materialize as a reduction in the quantity of regulating up capability. As the highest price, 
the PBPC will reach the system-wide offer cap (SWOC) which is set at the HCAP at the beginning of each 
calendar year, but which will drop to the LCAP if the PNM threshold is exceeded. 

Figure A3. Power Balance Penalty Curve 

 

Within SERVM, PBPC is modeled similarly as a phantom supply that may influence the realized price, and 
that will cause a reduction in available regulating reserves whenever called. However, only the first 200 
MW of the curve at prices below the cap are modeled, and it is assumed that all price points on the PBPC 
will increase according to the schedule SWOC. It is also assumed that the prices in the PBPC are reflective 
of the marginal cost incurred by going short of each quantity of regulating reserves. Consistent with 
current market design, we assume that once the PNM threshold is exceeded, the maximum price in the 
PBPC will be set at the LCAP + $1/MWh or $2,001/MWh.17  Note that even after the maximum PBPC 
price is reduced, ERCOT market prices may still rise to a maximum value of VOLL equal to $5,000/MWh 
during scarcity conditions because of the ORDC as explained in the following section. 

 
17 https://www.ercot.com/files/docs/2021/12/14/037OBDRR_01_Power_Balance_Penalty_Updates_to_%20Align_ 
with_PUCT_Approved_High_System_Wide_Offer_Ca.docx 
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6. OPERATING RESERVES DEMAND CURVE 

The most important and influential administrative scarcity pricing mechanism in ERCOT is the ORDC that 
reflects the willingness to pay for spinning and non-spinning reserves in the real-time market.  Figure A4 
illustrates our approach to implementing ORDC in our modeling, which is similar to ERCOT’s 
implementation, with some simplifications.   

Figure A4. Operating Reserve Demand Curves 

 

The ORDC curves were calculated based on a loss of load probability (LOLP) at each quantity of reserves 
remaining on the system, multiplied by the value of lost load (VOLL) caused by running short of operating 
reserves.18  This curve reflects the incremental cost imposed by running short of reserves and is added to 
the marginal energy cost to estimate the total marginal system cost and price. 

 
18 Note that the lost load implied by this function and caused by operating reserve scarcity is additive to the lost load.  
This is because the LOLP considered in ERCOT’s ORDC curve is caused by sub-hourly changes to supply and demand 
that can cause short-term scarcity and outages that are driven only by small quantities of operating reserves but are 
not caused by an overall resource adequacy scarcity, which is the type of scarcity we model elsewhere in this study.  
For simplicity and clarity, we refer to these reserve-related load-shedding events as “reserve scarcity costs” to 
distinguish them from the load shedding events caused by total supply scarcity.  We do not independently review 
here ERCOT’s approach to calculating LOLP, but instead take this function as an accurate representation of the 
impacts of running short of operating reserves.   
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The x-axis of the curve reflects the quantity of operating reserves available at a given time, where: (a) the 
spin ORDC includes all resources providing regulation up or RRS, suppliers that are online but dispatched 
below their maximum capacity, hydrosynchronous resources, non-controllable load resources, and 10-
minute quickstart; and (b) the spin + non-spin ORDC include all resources contributing to the spin x-axis as 
well as any resources providing NSRS and all 30-minute quickstart units.  Table A4 provides a summary of 
the resources in the model that were always available to contribute to the ORDC x-axis unless they were 
dispatched for energy.  It should be noted that the realized ORDC x-axis during a given hour in the 
simulation can be higher (if other resources are committed but not outputting at their maximum 
capability) or lower (during peaking conditions when some of the below resources are dispatched for 
energy). 

Table A4. Resources Always Contributing to ORDC X-Axis Unless Dispatched for Energy 

Reserve Type MW 
Spin X-Axis  
     Hydrosynchronous Resources 245 
     Non-Controllable Load Resources 1,115 
Non-Spin X-Axis  
     30-Minute Quickstart 5,058 
Total Spin + Non-Spin 6,894 

 

As in ERCOT’s ORDC implementation, we calculated: (a) non-spin prices using the non-spin ORDC; (b) spin 
prices as the sum of the non-spin and spin ORDC; and (c) energy prices as the sum of the marginal energy 
production cost plus the non-spin and spin ORDC prices. However, as a simplification we did not scale the 
ORDC curves in proportion to VOLL minus marginal energy in each hour.19 Instead, we treated the ORDC 
curves as fixed with a maximum total price adder of VOLL minus $500. This caused prices to rise to the cap 
of $5,000/MWh in scarcity conditions, because $500 is the cap placed on marginal energy prices in the 
model.  Higher-cost demand-response resources were triggered in response to high ORDC prices and 
therefore prevented prices from going even higher but did not affect the “marginal energy component” 
of price-setting. We modeled the ORDC curves out to a maximum quantity of 8,000 MW where the reserve 
price adders were zero. 

These ORDC curves create an economic incentive for units to be available as spinning or non-spinning 
reserve, which influences suppliers’ unit commitment decisions. We therefore modeled unit commitment 
in two steps: (1) a week-ahead optimal unit commitment over the fleet, with the result determining which 

 
19 See ERCOT’s implementation in 
http://lmpmarketdesign.com/papers/Back_Cast_of_Interim_Solution_B_Improve_Real_Time_Scarcity_Pricing_Whi
tepaper.pdf 
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long-lead and combined cycle resources will be committed;20 and (2) an hourly economic dispatch that 
dispatches online baseload units, and can commit 10-minute and 30-minute quickstart units if needed to 
satisfy energy or ancillary service requirements.21 Note that 10-minute quickstart units can earn spin 
payments from an offline position while 30-minute quickstart units can earn non-spin payments from an 
offline position. The model did not allow these resources to self-commit unless doing so resulted in greater 
energy and spin payments (net of variable and commitment costs) than would be available from an offline 
position.  We used a similar logic to economically commit or de-commit units until the incentives provided 
by the ORDC were economically consistent with the quantity of resources turned on. 

 

 
20 Short-term resources are included in the week-ahead commitment algorithm, but their commitment schedule is 
not saved since it will be dynamically calculated in a shorter window.  But using short-lead resources in the week-
ahead commitment allows them to affect the commitment of long-lead resources. 
21 These week-ahead and day-ahead commitment algorithms minimize cost subject to meeting load as well as 
ERCOT’s administratively determined regulation up, spinning reserve targets, and non-spin targets. 
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