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Disclaimer: This report was prepared by the authors for the Electric Reliability Council of Texas (ERCOT).  It 

is provided as is, and PowerGEM and ERCOT disclaim any and all express or implied representations or 

warranties of any kind relating to the accuracy, reliability, completeness, or currency of the data, 

conclusions, forecasts or any other information in this report. Readers of this report should independently 

verify the accuracy, reliability, completeness, currency, and suitability for any particular purpose of any 

information in this report.  

Furthermore, this report is not intended, nor should it be read as either comprehensive or fully applicable 

to any specific opportunity in the ERCOT market, as all opportunities have idiosyncratic features that will 

be impacted by actual market conditions.  Readers of this report should seek independent expert advice 

regarding any information in this report and any conclusions that could be drawn from this report. The 

report itself in no way offers to serve as a substitute for such independent expert advice. 
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otherwise).   
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EXECUTIVE SUMMARY 
Planning for reliability for structured capacity markets and vertically integrated utilities requires formal 

quantification of the reliability contribution of each resource class in order to ensure compliance with 

reliability standards. The reliability contribution of resource classes is generally expressed as its Effective 

Load Carrying Capability (ELCC).  In energy-only markets such as ERCOT, while there is currently no capacity 

accreditation scheme, it is still important that market participants have insight into the reliability 

contribution of each resource class. ERCOT contracted with PowerGEM to perform an ELCC study to 

quantify the contribution of each resource class to Planning Reserve Margins (PRM) reported in ERCOT’s 

Report on Capacity, Demand and Reserves in the ERCOT Region (CDR). The use of the ELCC approach has 

been codified in ERCOT’s Nodal Protocols.1 

ELCCs are generally calculated relative to the 1-day-in-10-years (0.1 LOLE) reliability standard used in most 

of North America. In 2024, ERCOT introduced a multi-pronged reliability standard. This standard requires 

compliance with the 0.1 LOLE metric but also puts limitations on the magnitude and duration of individual 

reliability events. The maximum modeled average hourly firm load shed is a parameter to be calculated 

and updated by December of each year based on guidance from Public Utility of Texas staff and 

Transmission Operations. The longest firm load shed event must be shorter than 12 hours. An exceedance 

threshold of one percent is applied to both the magnitude and duration criteria, meaning that no more 

than one percent of events can exceed the criteria thresholds.2 The standard was not adopted until after 

the ELCC study completion. Therefore, for this study, SERVM was calibrated to 0.1 LOLE for the summer 

and winter seasons separately, but the seasonal LOLE will be explored for subsequent studies.  

ELCCs are calculated via simulations of the islanded 2026 ERCOT system using PowerGEM’s Strategic 

Energy and Risk Valuation Model (SERVM). The ELCC of a resource class is not a static value; it is contingent 

on the penetration of the resource class, underlying load characteristics, and interactions with other 

resource classes among other variables. To capture this dynamic, PowerGEM simulated dozens of 

portfolios with combinations of different resource penetration levels and technology attributes, and 

adjustments were made to load or capacity to keep reliability at the target. The ratio of the resource 

adjustment required to meet the reliability target to the capacity of the variable energy portfolio 

determines the portfolio ELCC. This process is illustrated in Figure ES1Error! Reference source not found.. 

 
1 See Protocol Sections 3.2.6.2 and 3.2.6.4, https://www.ercot.com/files/docs/2024/06/28/03-010125_Nodal.docx 
2 See the adopted standard: 54584_106_1426419.PDF 

https://interchange.puc.texas.gov/Documents/54584_106_1426419.PDF
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Figure ES1. ELCC Methodology 

 

For the 2024 ELCC study, PowerGEM explored alternative methodologies to capture interactions between 

different durations of storage resources. Fully analyzing the possible ranges of ERCOT portfolios consisting 

of wind, solar, and 4 different duration batteries in SERVM would require a 6-dimensional matrix of 

hundreds of thousands of scenarios. Given the intractability of analyzing such a matrix, PowerGEM 

proposed constructing a tool to quantify the discrete contribution of any storage portfolio up to 30GW of 

capacity consisting of any mix of durations for any combination of wind and solar capacity, each up to 60 

GW. This tool is built in Excel but is calibrated to SERVM simulations to ensure constraints such as charging 

limitations and cycle efficiency as well as beneficial attributes such as the ability to serve ancillary services 

factor into the ELCC quantification.  

A challenge with ELCC calculations is whether resources are given credit for their average or their marginal 

contribution to reliability. The sum of average ELCC contributions for all resources in a system that is 

precisely compliant with the reliability requirement will be equal to: 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑 ∗ (1 + 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑀𝑎𝑟𝑔𝑖𝑛). 

This is generally informative for planners to determine how long or short a given system will be. The 

marginal ELCC for every resource class is valuable to determine the contribution of the next resource to 

the system.  This is generally informative for planners to determine how long or short a given system will 

be.  

The marginal ELCC for every resource class determines the reliability contribution of the next resource to 

the system (which is useful information for the market), as well as helps distinguish the difference in 
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reliability value of incremental energy during the hours with highest risk of unserved energy versus other 

hours of the day, a new reporting requirement for the CDR.  

The Figure ES2 illustration provides visual guidance on the application of average and marginal ELCCs. The 

sum of all the average ELCCs is a stacking of the reliability contribution of all classes of resources and shows 

the aggregate contribution relative to the peak load forecast. 

Figure ES2. Visual ELCC Example 

 

Output of resources during critical hours – defined as either Expected Unserved Energy (EUE) hours or 

hours where incremental energy would reduce EUE – approximates marginal ELCC.  

The approach used for this ELCC study was to match average ELCC to summer afternoon risk periods and 

marginal ELCC to summer evening risk periods. This is not a perfect mapping since ELCC recognizes that 

the contribution to reliability is not a snapshot of conditions in any specific hour, but rather the reduction 

in net load peak that occurs over several hours. With the 2025 solar penetration, it is expected that the 

solar output during the gross load peak has minimal contribution to reliability (since all reliability problems 

are expected to be concentrated in the evening) so neither the average ELCC nor the marginal ELCC 

recognizes the full output of solar during gross peak periods.  

Winter average ELCCs are mapped to both morning and evening winter risk periods as the timing of the 

net load peaks are essentially identical to the gross load peaks.  
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ELCC RESULTS 

Given reliability need has historically been concentrated in summer afternoon hours, the reliability 

contribution of solar has been assumed to be quite high – the reliability credit for solar in past CDRs has 

been 74-100% between 2010-2024. The shift to winter reliability and the large additions of solar capacity 

have significantly lowered the projected contribution of marginal solar additions in the summer, as shown 

in Figure ES3. In the winter, solar output is minimal in very early morning hours and very late evening hours 

during reliability risk periods. As solar penetration grows, incremental solar capacity does not contribute 

significantly to reliability. 

Figure ES3. Summer Evening Solar ELCCs 

 

Wind resource reliability contributions are more stable, as shown in Figure ES4, but are also subject to 

further declines in ELCC with penetration as the risk of large area wind lulls have a larger impact on 

reliability. 
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Figure ES4. Summer Evening Wind ELCCs 

 

Solar morning and afternoon winter ELCCs for penetrations expected by 2026 are less than 2%, and wind 

ELCCs in the winter are generally less than 32%. 

Storage summer afternoon ELCCs indicate that 3 hours or longer duration is required to provide 91%+ 

ELCC over the next 5-year planning window. The summer evening storage ELCCs for storage with 5 hour 

or longer duration is required to provide 74%+ ELCC over the same planning window. Storage winter 

morning and evening ELCCs indicate that 5 hours or longer duration is required to provide 76%+ ELCC over 

the next 5-year planning window.  

From an aggregate planning standpoint, significant solar and storage resources are being added over the 

next 5 years as shown in Figure ES5. However, the total reliability contribution of system resources is only 

rising modestly while load is projected to grow much faster. The composite system ELCC MW shown in 

Figure ES6 uses estimated values for the conventional fleet, so it does not provide precise indication of the 

reliability value of the portfolio, but it does highlight the potential gap between reliability capability of the 

system and the growing load forecast. 
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Figure ES5. Resource Portfolio Capacities 

 

Figure ES6. Seasonal Portfolio ELCC Versus “1 + Planning Reserve Margin” Times Peak Load 

 

In addition to distinguishing reliability value by technology, the location of resources affects reliability 

value. The following variables were also tested as part of this study: 
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• Wind Locations: 

o Wind Panhandle (Wind-P) 

o Wind Coastal (Wind-C) 

o Wind Other (Wind-O) 

• Solar Locations: 

o Solar Other 

o Solar West 

o Solar Far West 

Table ES1 and  
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Table ES2 provide a snapshot of the risk period ELCCs for 2025 projected penetrations of wind, solar, and 

storage capacity distinguished by location or duration respectively. 

Marginal ELCCs of all resource classes exhibit the effects expected with large portfolios of energy-limited 

or non-dispatchable resources. As the penetration grows, the contribution of the next MW declines since 

the net load is being shifted to periods where solar or wind output is lower, or the duration need for the 

next MW of battery has grown since the initial batteries have already been deployed for the highest peak 

periods. The average ELCCs have also declined, but at a slower pace since average ELCC accounts for the 

higher contribution of the initial penetration.  

Table ES1. 2025 Summer Risk Period ELCCs 

Technology 
Installed  
Capacity  

(MW) 

Afternoon 
 ELCC  
(%) 

Evening 
 ELCC  
(%) 

Wind-C 5,678 30.83% 16.37% 

Wind-O 29,796 15.68% 8.33% 

Wind-P 4,669 33.58% 17.83% 

Solar Other 22,922 27.21% 5.51% 

Solar West 7,000 36.14% 7.32% 

Solar Far West 3,653 36.14% 7.32% 

Storage 1-hour 6,898 70.72% 13.71% 

Storage 2-hour 7,651 93.29% 27.43% 

Storage 3-hour 202 93.29% 41.14% 

Storage 4-hour 247 93.29% 54.85% 

Storage 5-hour 20 93.29% 68.15% 
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Table ES2. 2025 Winter Risk Period ELCCs 

Technology 
Installed  
Capacity  

(MW) 

Morning 
ELCC 
(%) 

Evening 
 ELCC 
(%) 

Wind-C 5,678 29.90% 29.90% 

Wind-O 30,296 15.20% 15.20% 

Wind-P 4,835 32.56% 32.56% 

Solar Other 24,867 1.95% 1.95% 

Solar West 7,934 2.59% 2.59% 

Solar Far West 3,653 2.59% 2.59% 

Storage 1-hour 7,847 25.46% 23.14% 

Storage 2-hour 10,239 60.47% 56.15% 

Storage 3-hour 202 86.08% 90.42% 

Storage 4-hour 401 93.37% 93.37% 

Storage 5-hour 20 93.37% 93.37% 
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KEY MODEL INPUTS AND PARAMETERS 

A. MODELING FRAMEWORK 

This study was performed using the Strategic Energy & Risk Valuation Model (SERVM). Like other reliability 

models, SERVM probabilistically evaluates the reliability implications of any given portfolio.  It does so by 

simulating generation availability, load profiles, load uncertainty, inter-regional transmission availability, 

and other factors. SERVM ultimately generates standard reliability metrics such as loss-of-load expectation 

(LOLE), loss-of-load hours (LOLH), and expected unserved energy (EUE).  Unlike other reliability modeling 

packages, however, SERVM simulates economic outcomes, including hourly generation dispatch, ancillary 

services, and price formation under both normal conditions and emergency operating procedures.   

The multi-area economic and reliability simulations in SERVM include an hourly chronological economic 

dispatch that is subject to inter-regional transmission constraints. Each generation unit is modeled 

individually, characterized by its economic and physical characteristics. Planned outages are scheduled in 

off-peak seasons, consistent with standard practices, while unplanned outages and derates occur 

probabilistically using historical distributions of time between failures and time to repair. Load, hydro, 

wind, and solar conditions are modeled based on profiles consistent with individual historical weather 

years. Dispatch limitations and limitations on annual energy output are imposed on certain types of 

resources such as demand response, hydro generation, and seasonally mothballed units. 

The model implements a week-ahead and then multi-hour-ahead unit commitment algorithm considering 

the outlook for weather and planned generation outages. In the operating day, the model runs an hourly 

economic dispatch of baseload, intermediate, and peaking resources, including an optimization of 

transmission-constrained inter-regional power flows to minimize total costs. During most hours, hourly 

prices reflect marginal production costs, with higher prices being realized when import constraints are 

binding. During emergency and other peaking conditions, SERVM simulates scarcity prices that exceed 

generators’ marginal production costs.  

To examine a full range of potential reliability outcomes, we implement a Monte Carlo analysis over a large 

number of scenarios with varying demand and supply conditions. Because reliability events occur only 

when system conditions reflect unusually high loads or limited supply, these simulations must capture 

wide distributions of possible weather, load growth, and generation performance scenarios. This study 

incorporates 44 weather years, 5 levels of economic load forecast,3 and 25 draws of generating unit 

performance for a total of 5,500 iterations for each simulated case. Each individual iteration simulates 

8,760 hours for the study year of 2026.   

 
3 The five discrete levels of load forecast error we model are equal to 0%, +/−2%, and +/−4% above and below the 
ERCOT load forecast. 
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To properly capture the magnitude and impact of reliability conditions during extreme events, emergency 

operating procedures must be faithfully replicated. For this reason, SERVM simulates a range of emergency 

procedures, accounting for energy and call-hour limitations, dispatch prices, operating reserve depletion, 

dispatch of economic and emergency demand-response resources, and administrative scarcity pricing.4 

B. STUDY YEAR AND TOPOLOGY 

The ELCC study analyzed the expected conditions and resources in 2026. ERCOT was modeled as an 

island and all generation is assumed to be fully deliverable within the ERCOT region.  

C. COMPONENTS OF SUPPLY AND DEMAND 

Load and resource accounting for the 2026 system is based on ERCOT’s conventions in the May 2024 

Capacity, Demand and Reserves (CDR) Report, as summarized in Table 1.5 The fleet summary developed 

by ERCOT staff for the CDR Report was the most recent data available when this study was developed.6 

Any units coming online before June 2026 were included in the study and assumed to come online in 

January of the year, and any units coming only after June 2026 were excluded in the study to maintain a 

homogeneous resource mix for the study year. Firm peak load is reduced for non-controllable load 

resources (LRs), 10-minute and 30-minute emergency response service (ERS), and Transmission/ 

Distribution Service Providers (TDSP) energy efficiency and load management. All wind, solar, and storage 

capacity was removed from the base case used for the ELCC surface development, and perfect combustion 

turbine capacity – capacity with no outages or ramping limitations – was added until the LOLE was 0.1 for 

the summer and winter seasons.    

  

 
4 Similar to other reliability modeling exercises, our study is focused on resource adequacy as defined by having 
sufficient resources to meet peak summer load.  As such, we have not attempted to model other types of outage or 
reliability issues such as transmission and distribution outages, common mode failures related to winter weather 
extremes, or any potential issues related to gas pipeline constraints or delivery problems. 
5 https://www.ercot.com/gridinfo/resource 
6 In general, the May 2024 CDR is the authoritative source, the following assumptions were used for including 
certain resource types: (1) switchable units – include as internal resources, with the units that are committed off-
system excluded from our model. (2) unit additions/retirements – include or exclude starting in the CDR-specified 
year. (3) inactive planned – excluded from model. 
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Table 1. Supply and Demand Summary for 2026 Study Year 

 ERCOT System 

Peak Load (MW) 86,158 

Load Reduction (MW) 2,622 

LRs serving RRS (MW) 1,115 

LRs serving ECRS (MW) 250 

10-Minute and 30-Minute ERS (MW) 885 

TDSP Curtailment Programs (MW) 372 

Supply  
 

Conventional Generation (MW) 67,079 

Hydro (MW) 455 

Wind (MW)* 41,642 

Solar (MW)* 53,501 

Storage (MW)* 23,243 

PUNs (MW) 2,760 

Note: Energy Efficiency Programs are already removed from the modeled peak 
load and are not represented in the modeled load reduction programs (ERCOT 
Aggregate = 3,497 MW in 2026 Study Year) 
*Nameplate Capacity of Unit Category 

On the demand side, this study started with ERCOT’s zonal hourly load shapes under many possible 

weather patterns and peak load forecast for 2026.  PowerGEM simulated 44 weather years, from 1980 

through 2023 (with corresponding wind and solar conditions from the same years).  When calculating 

expected values, an equal probability for each year’s weather was assumed.7   

D.  DEMAND SHAPES AND WEATHER UNCERTAINTY MODELING 

We represented weather uncertainty in the projected ERCOT 2026 peak load by modeling 44 load forecasts 

based on 44 historical weather patterns from 1980-2023. The calculated 50/50 loads for the 2026 study 

year is provided in Table 2. The 50/50 peak demand forecast includes load growth from large industrial 

loads including data centers and large flexible loads which have signed interconnection agreements with 

their Transmission Service Providers (TSPs). The impact of accounting for the TSP officer letter loads on 

ELCCs will be investigated during our 2025 studies.  

Table 2. Seasonal 50/50 Peak Before and After DC and LFL Additions 

Scenario 
Total Internal Demand (MW) 

Winter Summer 

Before DC and LFL Additions 78,021 88,037 
After DC and LFL Additions 86,051 99,550 

 

 
7 Applying equal probabilities is reasonable given that so many years can be taken to be fairly representative of the 
underlying distribution, assuming there is not a trend in the average weather or in the variability of weather.  
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 Figure 1 shows the variability in summer and winter peak load across the 44 weather years simulated for 

this study. The most severe summer peak is 3.8% above the normal weather summer peak while the most 

severe winter peak is 24.7% above the normal weather winter peak.  

Figure 1. Seasonal Peak Load Variance by Weather Year 

 

E. NON-WEATHER DEMAND FORECAST UNCERTAINTY AND FORWARD PERIOD  

The load forecast errors were updated to reflect a 2-year ahead look that reflects that load may grow 

faster or slower than expected. As shown in the right chart of Figure 2, we assume that non-weather load 

forecast error (LFE) is normally distributed with a standard deviation of 0.43% on a 1-year forward basis, 

increasing by 0.66% with each additional forward year.8 The distribution included no bias or asymmetry in 

non-weather LFEs. The left-hand chart of Figure 2 shows the five discrete levels of LFE we modeled, equal 

to 0%, +/−2%, and +/-4% above and below the forecast.  The largest errors are the least likely, consistent 

with a normal distribution.   

 
8 This assumed LFE is a standard assumption that we developed in lieu of any ERCOT-specific analysis, which would 
require either a longer history of load forecasts in ERCOT or a new analysis developed out of ERCOT’s peak load 
forecast, neither of which are currently available.  
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Figure 2. Non-Weather Load Forecast Error 

 

F. GENERATION RESOURCES 

The economic, availability, ancillary service capability, and dispatch characteristics of all generation units 

in the ERCOT fleet are modeled, using unit ratings and online status consistent with ERCOT’s May 2024 

CDR report.  

1. CONVENTIONAL GENERATION OUTAGES 

A major component of reliability analyses is modeling the availability of supply resources after considering 

maintenance and forced outages.  We model forced and maintenance outages of conventional generation 

units stochastically. Partial and full forced outages occur probabilistically based on distributions accounting 

for time-to-fail, time-to-repair, startup failure rates, and partial outage derate percentages.  Maintenance 

outages also occur stochastically, but SERVM accommodates maintenance outages with some flexibility to 

schedule maintenance during off-peak hours. Planned outages are differentiated from maintenance 

outages and are scheduled in advance of each hourly simulation. Consistent with market operations, the 

planned outages occur during low demand periods in the spring and fall, such that the highest coincident 

planned outages occur in the lowest load days. This outage modeling approach allows SERVM to recognize 

some system-wide scheduling flexibility while also capturing the potential for severe scarcity caused by a 

number of coincident unplanned outages.  

We develop distributions of outage parameters for time-to-fail, time-to-repair, partial outage derate 

percentages, startup probabilities, and startup time-to-repair from historical Generation Availability Data 

System (GADS) data for individual units in ERCOT’s fleet, supplemented by asset class average outage rates 

provided by ERCOT where unit-specific data were unavailable. Table 3. Equivalent Forced Outage Rates by 

Asset Class summarizes fleet-wide and asset-class outage rates, including both partial and forced outages. 

Table 3. Equivalent Forced Outage Rates by Asset Class 

Unit Type EFOR (%) 

Gas 11.0 

Biomass 2.4 
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Coal 27.9 

Nuclear 2.1 

Storage 5.0 

Fleet Weighted Average 11.4 

Additional forced outage probabilities were modeled for cold weather. Significant calibration work was 

performed to replicate outages observed in Winter Storms Uri and Elliott.9 Based on forecasted 

improvement in cold weather performance by ERCOT, the incremental forced outage probability during 

extreme cold weather was reduced by 85% for the 2024 studies. The effect of this change is that during 

the coldest temperatures, the conventional fleet is expected to have a percentage on forced outage equal 

to its historical forced outage rate plus 15% of the incremental outages observed during the two most 

extreme winter events in history, as shown in Figure 3. 

Figure 3. Cold Weather Forced Outage Modeling 

 

2. PRIVATE USE NETWORKS 

We represent generation from Private Use Networks (PUNs) in ERCOT on a net generation basis, where 

the net output increases with the system portion of peak load consistent with historical data and as 

summarized in Figure 4. At any given load, the realized net PUN generation has a probabilistic quantity, 

with 10 different possible quantities of net generation within each of 10 different bands of system load.10 

 
9 More details on modeling weather events and associated thermal outage probabilities is available at 
https://www.ercot.com/files/docs/2023/08/23/4__Weather-based_Thermal_Outage_Modeling.pptx. 
10 Hourly net PUN output data by zone gathered from ERCOT.  
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Each of the 10 possible quantities has an equal 10% chance of materializing, although the figure reports 

only the lowest, median, and highest possible quantity. The probabilistic net PUN supply curve was 

developed based on aggregate hourly historical net output data within each range of peak load 

percentage. During scarcity conditions in the simulations with load at or above 88% of normal peak load, 

PUN output produces at least 2,306 MW of net generation with an average of 2,694 MW.  

Figure 4. PUN Net Generation 

 

3. INTERMITTENT WIND AND SOLAR 

We modeled a total quantity of intermittent wind and solar photovoltaic resources that reflects what 

ERCOT reported in the May 2024 CDR Report. Aggregate wind and solar profiles were created that used 

the same profile breakdown as the base case and then were used for simulations along the surface. 

Technology specific profiles were created by aggregating the appropriate profiles from the base case to 

obtain one average profile for each technology.  

We developed our system-wide hourly wind profiles by aggregating 44 years of synthesized hourly wind 

shapes for each location of individual units across the system wind shapes over 1980 to 2023, as provided 

by ERCOT staff.11  Figure 5 plots the average wind output by season and time of day, showing the highest 

output overnight and in spring months with the lowest output in mid-day and in summer months.  The 

overall capacity factor for wind resources was 38.9%. 

 
11 ERCOT obtained the original wind profiles from UL (formerly AWS Truepower).   



21 
 

Figure 5. Average Wind Output by Season and Time of Day 

 

We similarly model hourly solar PV output based on hourly output profiles that are specific to each 

weather year, as aggregated from unit level or county-specific synthesized output profiles over years 1980 

to 2023.12  In aggregate, solar resources had a capacity factor of 26.5% across all years. 

 

ELCC SURFACE STUDY APPROACH 

This study focuses on calculating the ELCC of renewable and energy storage portfolios. The ELCC of a 

variable energy resource is the capacity value (expressed in MW) associated with the resource’s reliability 

contribution to the system. The ELCC can also be measured as a percentage of the calculated capacity 

value relative to the nameplate capacity value of the resource.  The process used in this study consists of 

the following steps: 

1. The first step in the portfolio ELCC analysis was to calibrate the base case to a 0.1 LOLE target in 

both the summer and winter. The study year chosen was 2026 and involved removing all the 

variable energy resources from ERCOT and some conventional generation and adding perfect 

capacity – capacity with no outages or ramping limitations – until the summer and winter reliability 

risk is at 0.1 LOLE individually.  

 
12 Individual county and site-specific output profiles for 1980-2021 were provided by ERCOT, obtained through UL 
(formerly AWS Truepower). 
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2. Starting with the base case at 0.1 LOLE above, solar and wind capacity of 60 GW each was added 

to the system, which improved the LOLE. Perfect capacity was removed until the reliability risk in 

the summer and winter was reduced to 0.1 LOLE. The MW value of perfect capacity removed was 

equal to the average ELCC of the added variable energy resource portfolio. Figure 6, below, 

represents the ELCC calculation process. 

Figure 6. ELCC Methodology  

 

The ELCC scenarios analyzed can be summarized as a combination of the following capacity vectors: 

• Solar capacity (MW): 0 - 60 GW 

• Wind capacity (MW): 0 - 60 GW 

For example, Table 4 represents the matrix of all portfolios modeled in SERVM for a solar-wind surface. 
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Table 4. Summer Portfolio Capacity Contribution 

  

The ELCC matrices were constructed for varying wind and solar generation levels without storage in the 

system. These compact matrices were interpolated at step-sizes of 1,000 MW for both wind and solar 

dimensions to generate a wind-solar surface with monotonically decreasing first-order derivatives. The 

interpolation process utilized a bivariate spline approach, incorporating iterative triangular smoothing to 

refine the surface. Figure 7 represents a dense matrix between solar and wind in the summer. The goal of 

creating a 2-dimensional matrix of non-dispatchable resources (wind and solar) is to generate ELCCs for 

unlimited combinations of storage portfolios.  

Figure 7. Summer Evening Wind ELCCs 

 

30,000    35,000    40,000    45,000    50,000    55,000    60,000    
20,000         13,695      14,465      15,195      15,932      16,671      17,341      17,832 
25,000         14,108      14,931      15,733      16,554      17,359      18,065      18,564 
30,000         14,414      15,296      16,142      17,025      17,859      18,567      19,073 
35,000    14,664         15,611      16,518      17,328      18,239      18,935 19,445    
40,000         14,865      15,871      16,821      17,719      18,532      19,213      19,722 
45,000         15,021      16,067      17,047      17,952      18,755      19,236      19,924 
50,000         15,123      16,197      17,200 18,115         18,918      19,578      20,073 
55,000    15,170         16,265      17,287      18,214      19,023      19,691      20,193 
60,000         15,171      16,282      17,315      18,247      19,058      19,730      20,223 

Wind MW
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A similar surface was also constructed for Winter. These seasonal two-dimensional surfaces are then 

leveraged using an out-of-model approach to establish storage values for each portfolio. This out-of-model 

event-based approach helps to calculate the reliable storage capacity value for any combination of storage 

duration (X GW of 2-Hr Battery, Y GW of 4-Hr Battery, Z GW of 8-Hr Battery, etc.). 

Steps for the Out-of-Model Event-Based Approach: 

1. LOLE Event Identification: 
a. SERVM identifies numerous Loss of Load Expectation (LOLE) events at 0.1 LOLE for various 

Solar and Wind penetrations. 
b. This step determines all the Loss of Load days at different Solar-Wind penetration levels. 

2. Redistribution of Loss of Load Events via the Out-of-Model Tool: 
a. The out-of-model tool redistributes Loss of Load (LoL) events to optimize using different 

storage technologies. 
b. This redistribution is guided by energy equity principles, ensuring a fair and effective 

allocation of energy resources. 
c. The tool evaluates storage technologies' capacity to meet energy demands during peak 

loss of load periods, prioritizing resource allocation to minimize unserved energy most 
equitably and efficiently. 

3. Storage Peak Shaving Capability: 
a. For each day experiencing Expected Unserved Energy (EUE), the tool calculates the peak 

shaving capability of each storage technology, as shown in Figure 8. 
b. This step ensures storage systems effectively mitigate unserved energy by reducing peak 

demand. 

Figure 8. Storage ELCC Quantification 
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4. ELCC Calculation: 

a. The average Effective Load Carrying Capability (ELCC) is calculated based on the peak 

shaving contribution of each storage duration class, as shown in Figure 9.13 

b. The marginal ELCC is determined by evaluating the average output of storage during 

storage-constrained periods, reflecting the incremental value of additional storage 

capacity. 

Figure 9. Average and Marginal ELCC Calculation 

 
 

 

5. Seasonal Weighting of Net Load Reduction and Marginal ELCC Values: 

a. The reductions in net load peak and marginal ELCC values are weighted to produce 

seasonal summer and winter ELCC estimates. 

b. This weighting is based on case probabilities derived from the stochastic model in SERVM, 

which considers variations in resource availability, demand patterns, and other 

uncertainties. 

The results from the interpolated solar-wind surface, combined with the storage dispatch tool, are used 

to generate outputs for any specific solar-wind and storage profile. The solar and wind portfolio ELCC is 

derived from the interpolated surface, while marginal contributions are integrated to quantify the specific 

impact of solar and wind at various penetration levels. These contributions are then allocated based on 

location, such as Solar-West and Solar-Non-West.  

 
13 As discussed in the executive summary, average and marginal ELCC were mapped to risk periods based on closest 
alignment.  
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To ensure alignment with SERVM results, penalty factors were calibrated and applied to the ELCC values 

obtained from the Excel storage dispatch model, as shown in  

 
Figure 10. These penalty factors account for both additional benefits, such as ancillary service 

contributions and interactions with other resources, and constraints, including starting state of charge 

(SOC) and outage impacts on other resources. This calibration process ensures a more accurate reflection 

of system dynamics and resource limitations.  

 
Figure 10. Seasonal Penalty Factors 

 

A final adjustment was made for forced outage risk on the batteries. Given variable and uncertain 

performance risk on batteries, we assumed a 5% impact on ELCC for batteries for all results published. As 

more performance data for batteries becomes available, future ELCC studies can more robustly measure 

the impact of outage risk on reliability contribution. 
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RESULTS 
SERVM was calibrated seasonally to 0.1 LOLE for the summer and winter seasons separately. As the 

renewable portfolio penetration was increased, perfect capacity was removed from the system to 

calibrate it back to 0.1 seasonal LOLE.  

Given reliability need has historically been concentrated in summer afternoon hours, the reliability 

contribution of solar has been assumed to be quite high – the reliability credit for solar in past CDRs has 

been 74-100% between 2010-2024. The shift to winter reliability and the large additions of solar capacity 

have significantly lowered the projected contribution of marginal solar additions in the evenings in 

summer, as shown in Figure 11. Solar output is minimal in the winter in very early morning hours and very 

late evening hours where reliability risk occurs. As solar penetration continues to grow, incremental solar 

capacity does not contribute much to reliability.  

Figure 11. Summer Evening Solar ELCCs 

 

Figure 12 shows summer wind resource reliability contributions are more stable but are also subject to 

further declines in evening ELCCs with penetration as the risk of large area wind lulls have a larger impact 

on reliability.  
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Figure 12. Summer Evening Wind ELCCs 

 

The resource class ELCC results mentioned above were also decomposed into technology or location 

specific ELCCs. Renewable profiles for each zone were created by calculating a weighted average of all the 

county level profiles for the zone or technology being analyzed. A 1-GW marginal unit was added at 2025 

penetrations to calculate the following ELCCs: 

• Wind-C 

• Wind-O 

• Wind-P 

• Solar Other 

• Solar West 

• Solar Far West 

Table 5 and 

Technology 
Installed  
Capacity  

(MW) 

Afternoon 
ELCC  
(%) 

Evening 
ELCC  
(%) 

Wind-C 5,678 30.83% 16.37% 

Wind-O 29,796 15.68% 8.33% 

Wind-P 4,669 33.58% 17.83% 
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Solar Other 22,922 27.21% 5.51% 

Solar West 7,000 36.14% 7.32% 

Solar Far West 3,653 36.14% 7.32% 

Storage 1-hour 6,898 70.72% 13.71% 

Storage 2-hour 7,651 93.29% 27.43% 

Storage 3-hour 202 93.29% 41.14% 

Storage 4-hour 247 93.29% 54.85% 

Storage 5-hour 20 93.29% 68.15% 

 

Table 6 provide the summer and winter risk period ELCC results for each of the technology and location 

specific tests that were performed at the 2025 penetrations. These tables also show the results for 1-to-5 

hour duration storage resources. 

 

 

Table 5. 2025 Summer Risk Period ELCCs for Technology or Location Specific Results 

Technology 
Installed  
Capacity  

(MW) 

Afternoon 
ELCC  
(%) 

Evening 
ELCC  
(%) 

Wind-C 5,678 30.83% 16.37% 

Wind-O 29,796 15.68% 8.33% 

Wind-P 4,669 33.58% 17.83% 

Solar Other 22,922 27.21% 5.51% 

Solar West 7,000 36.14% 7.32% 

Solar Far West 3,653 36.14% 7.32% 

Storage 1-hour 6,898 70.72% 13.71% 

Storage 2-hour 7,651 93.29% 27.43% 

Storage 3-hour 202 93.29% 41.14% 

Storage 4-hour 247 93.29% 54.85% 

Storage 5-hour 20 93.29% 68.15% 

 

Table 6. 2025 Winter Risk Period ELCCs for Technology or Location Specific Results 

Technology 
Installed  
Capacity  

(MW) 

Morning 
ELCC 
(%) 

Evening 
 ELCC  
(%) 

Wind-C 5,678 29.90% 29.90% 

Wind-O 30,296 15.20% 15.20% 

Wind-P 4,835 32.56% 32.56% 

Solar Other 24,867 1.95% 1.95% 

Solar West 7,934 2.59% 2.59% 

Solar Far West 3,653 2.59% 2.59% 

Storage 1-hour 7,847 25.46% 23.14% 
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Storage 2-hour 10,239 60.47% 56.15% 

Storage 3-hour 202 86.08% 90.42% 

Storage 4-hour 401 93.37% 93.37% 

Storage 5-hour 20 93.37% 93.37% 

 

The results from the interpolated solar-wind surface, combined with the storage dispatch tool, were used 

to generate outputs for the forecasted solar, wind, and storage penetrations for the next 5 years. Figure 

13 and Figure 14 provide the summer solar and wind risk period ELCCs overtime for each technology. The 

projected contribution of solar resources is expected to continue to decline over the next 5 years as we 

shift to winter reliability risk and continue to add large amounts of solar capacity to the system. Summer 

wind ELCCs and penetrations are more stable compared to solar. 

 

 

Figure 13. Summer Solar Location Specific Afternoon and Evening ELCCs Over the Next 5 Years 

 

Figure 14. Summer Wind Location Specific ELCCs Over the Next 5 Years 
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Figure 15 and Figure 16 provide the summer storage ELCCs for the next 5 years by duration. Summer 
afternoon storage ELCCs are expected to remain high over the next 5-year planning window while shorter 
duration resources contribution will continue to decline. Summer evening storage ELCCs indicate that 5 
hours or longer duration is required to provide greater than 85% ELCCs over the next 5-year planning 
window.  

Figure 15. Summer Storage Afternoon ELCCs of Varying Duration Over the Next 5 Years 
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Figure 16. Summer Storage Evening ELCCs of Varying Duration Over the Next 5 Years 

  

Figure 17 -Figure 20 provide the winter ELCCs for solar, wind, and storage, respectively. Winter morning 
and evening solar ELCCs over the next 5 years are low and continue to decline as penetration increases. 
Wind ELCCs stay relatively constant over the 5-year period with very slight declines in reliability 
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contribution. The winter morning and evening storage ELCCs all show a slow decline in reliability 
contribution across all durations.  

Figure 17. Winter Solar Location Specific Morning and Evening ELCCs Over the Next 5 Years 

 

Figure 18. Winter Wind Location Specific Morning and Evening ELCCs Over the Next 5 Years 

 

Figure 19. Storage Winter Morning ELCCs of Varying Duration Over the Next 5 Years 
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Figure 20. Storage Winter Evening ELCCs of Varying Duration Over the Next 5 Years 
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CONCLUSIONS AND NEXT STEPS 
The out-of-model approach employed in this ELCC study marks an improvement over past studies because 

it allows for consideration of multiple storage durations. While the out-of-model approach for storage 

ELCC calculations does not consider constraints such as starting state of charge or ancillary service 

eligibility, results were calibrated with SERVM simulations to ensure these factors were considered in the 

final ELCC values. 

The authors recognize the value of ELCC stability for all resource classes for signaling the reliability value 

of resources to those planning changes to the electric system. However, the reliability contribution of 

wind, solar, and storage are contingent not only on the penetration of each class, but on the composition 

of load in ERCOT and the performance characteristics of the conventional fleet. For example, electric 

heating loads, new large load responses to market price signals, or thermal generator winter performance 

could differ from current expectations and thereby significantly change the reliability contribution of the 

variable energy resource portfolio. Uncertainty in how these load and resource characteristics evolve in 

the future warrant monitoring of ELCC suitability for future forecast periods and their periodic re-

estimation if needed. 
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APPENDIX 

A. GENERATION RESOURCES 

1. HYDROELECTRIC 

We include 577 MW of hydroelectric resources, consistent with ERCOT’s May 2024 CDR report. We 

characterize hydro resources using eight years of hourly data over 2020-2023 provided by ERCOT, and 44 

years of monthly data over 1980-2023 from Form EIA-923.14  For each month, SERVM uses four parameters 

for modeling hydro resources, as summarized in Figure A1: (1) monthly total energy output, (2) monthly 

maximum output, (3) daily maximum output, and (4) daily minimum output, as estimated from historical 

data.  

When developing hydro output profiles, SERVM will first schedule output up to the monthly maximum 

output into the peak hours but will schedule some output across all hours based on historically observed 

output during off-peak periods up to the total monthly output. During emergencies, SERVM can schedule 

up to 49.25 MW in drought conditions and 116.15 MW for all other months.  

Figure A1. Historical Hydro Energy Relationships 

 

 
14 https://www.eia.gov/electricity/data/eia923/ 
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2. FUEL PRICES  

We used the 2023 Annual Energy Outlook reference case fuel forecasts for the 2026 study year. The 

average fuel prices used in the study are presented in Table A1. 

Table A1. ERCOT Fuel Forecasts 

Coal Fuel 
Price 

($/MMBtu) 

Gas Fuel 
Price 

($/MMBtu) 

Diesel Fuel 
Price 

($/MMBtu) 
2.21 3.41 16.95 

B. ANCILLARY SERVICE MODELING 

Ancillary services are necessary to maintain the reliability of the ERCOT System. Ancillary services are 

procured to ensure sufficient resource capacity is online or able to be brought online in a timely manner 

to balance the variability that cannot be covered by the 5-minute energy market. The four types of 

Ancillary Services in ERCOT currently are: regulation up service, regulation down service, responsive 

reserve service, and non-spinning reserve service. ERCOT typically maintains a minimum of 3,000 - 4,000 

MW of online upward reserves in order to protect reliability in the event of a disturbance or to provide 

the necessary flexibility to follow potentially volatile net load patterns. SERVM maintains these online 

upward reserves when adequate resources are available. When resource availability declines during 

simulations, emergency operating procedures are activated in SERVM to deploy reserves and call 

emergency resources such as demand response. Emergency operating procedures are discussed in more 

detail in Section C.  

C. SCARCITY PRICING AND DEMAND RESPONSE MODELING 

Several types of demand response participate directly or indirectly in ERCOT’s market, including 

Emergency Response Service (ERS), Load Resources, and Price Responsive Demand. These various 

resource types differ from each other in whether they are triggered by price-based or emergency actions, 

and restrictions on availability and call hours. Table A2 summarizes the resources, explaining how we 

modeled their characteristics and their assumed marginal costs when utilized, and how they were 

accounted for in the reserve margin. 
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Table A2. Summary of Demand Resource Characteristics and Modeling Approach 

Resource 
Type 

Quantity 
(MW) 

Modeling Approach 
Adjustments 

to ERCOT 
Load Shape 

Reserve Margin 
Accounting 

Energy 
Efficiency 

3,497 Not explicitly modeled None Load reduction 

Firm Fuel 
Supply Service 

141 Triggered based on wind chill None None 

Distribution 
Voltage 

Reduction 

701 Emergency trigger before EEA Level 1 None None 

30-Minute ERS 875 Emergency trigger before EEA Level 1 None Load reduction 

10-Minute ERS 10 Emergency trigger before EEA Level 1 None Load reduction 

Load 
Management 

372 Emergency trigger at EEA Level 1 None Load reduction 

Non-
Controllable 

LRs 

1,115 

Economically dispatch for Responsive 
Reserve Service (most hours) or energy 

(few peak hours). Emergency 
deployment at EEA Level 2 

None Load reduction 

Controllable 
LRs 

 
Currently no controllable LRs modeled 

in ERCOT 
n/a n/a 

4 CP 
Reductions 

1,700 Not explicitly modeled None 
None; excluded from 
reported peak load 

Price 
Responsive 

Demand 

Variable Not explicitly modeled None 
None; excluded from 
reported peak load 

Sources and Notes: 
 Developed based on analyses of recent DR participation in each program and input and data from ERCOT staff.  

 

1. EMERGENCY RESPONSE SERVICE  

Emergency response service (ERS) includes two types of products, 10-minute and 30-minute (weather 

sensitive and non-weather sensitive) ERS, with the quantity of each product available changing by time of 

day and season as shown in Table A3. The quantity of each product by time of day and season is 

proportional to the quantities most recently procured over the four seasons of year 2023 and 2024, with 

the 2026 summer peak quantity assumptions provided by ERCOT.15 Demand resources enrolled under ERS 

are dispatchable by ERCOT during emergencies but cannot be called outside their contracted hours and 

cannot be called for more than twenty-four hours total per season.  

 
15 For total ERS procurement quantities by product type and season, see https://www.ercot.com/mp/data-
products/data-product-details?id=NP3-144-M 
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Table A3. Assumed ERS Quantities Available in 2026 

 
Sources and Notes:  
 Total available ERS MW for 2026 June-Sept. TP4 provided by ERCOT staff. 
 ERS 10-min and 30-min MW for other contract periods scaled proportionally to the study year quantities based 

on availability in 2023-2024. 

2. LOAD RESOURCES PROVIDING REAL-TIME RESERVES  

Consistent with ERCOT’s published minimum Responsive Reserve Service (RRS) requirements, we modeled 

1,115 MW of non-controllable load resources (LRs) that actively participate in the RRS market.16  All 1,115 

MW were modeled as responsive to Energy Emergency Alert, Level 2.  

 

 
16 Currently, 1,400 MW is the maximum quantity of non-controllable LRs that are allowed to sell responsive reserve 
service (RRS) and is the clearing quantity in the vast majority of hours.  
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3. FIRM FUEL SUPPLY SERVICE 

The Firm Fuel Supply Service (FFSS) is an ERCOT service that was developed to address reliability during 

extreme cold weather conditions and is a firm-fuel product that provides additional grid reliability and 

resiliency during extreme cold weather. For this study, the selected approach estimated temperature-

based decreases in fuel limitation outages for units providing FFSS. A fuel limitation outages trend line was 

constructed from historical outages, as shown in Figure A2, that assumes that about 4.5% of the fleet-wide 

outages were avoided by procuring FFSS. This assumption translates to a roughly 141 MW improvement 

in outages at 14 degrees and about 50 MW improvement in outages at 25 degrees. The outage 

improvement is represented within SERVM as a 141 MW perfect gas unit that provides a linear outage 

reduction improvement ranging from 50 to 141 MW as wind chill temperature decreases.  

Figure A2. Firm Fuel Supply Service Historical Outage Analysis 

 

4. DISTRIBUTION VOLTAGE REDUCTION 

Distribution Voltage Reduction (DVR) is a voluntary effort to reduce system demand, in response to a 

temporary decrease in available electricity supply, by systematically lowering the operating voltage on the 

distribution system. Voltage reduction is performed at ERCOT’s instruction before an EEA Level 1 event is 

reached. This is modeled within SERVM as a 701 MW unit with no deployment limitations. The capacity 

amount is based on previous information requests that ERCOT sent to Transmission Operators regarding 

DVR program attributes and expected load reductions based on peak load scenarios.  

5. POWER BALANCE PENALTY CURVE 

The Power Balance Penalty Curve (PBPC) is an ECOT market mechanism that introduces administrative 

scarcity pricing during periods of supply scarcity. The PBPC is incorporated into the security constrained 
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economic dispatch (SCED) software as a set of phantom generators at administratively specified price and 

quantity pairs, as summarized in the blue curve in Figure A3. Whenever PBPC is dispatched for energy, it 

reflects a scarcity of supply relative to demand in that time period that, if sustained for more than a 

moment, will materialize as a reduction in the quantity of regulating up capability. As the highest price, 

the PBPC will reach the system-wide offer cap (SWOC) which is set at the HCAP at the beginning of each 

calendar year, but which will drop to the LCAP if the PNM threshold is exceeded. 

Figure A3. Power Balance Penalty Curve 

 

Within SERVM, PBPC is modeled similarly as a phantom supply that may influence the realized price, and 

that will cause a reduction in available regulating reserves whenever called. However, only the first 200 

MW of the curve at prices below the cap are modeled, and it is assumed that all price points on the PBPC 

will increase according to the schedule SWOC. It is also assumed that the prices in the PBPC are reflective 

of the marginal cost incurred by going short of each quantity of regulating reserves. Consistent with 

current market design, we assume that once the PNM threshold is exceeded, the maximum price in the 

PBPC will be set at the LCAP + $1/MWh or $2,001/MWh.17  Note that even after the maximum PBPC 

price is reduced, ERCOT market prices may still rise to a maximum value of VOLL equal to $5,000/MWh 

during scarcity conditions because of the ORDC as explained in the following section. 

 
17 https://www.ercot.com/files/docs/2021/12/14/037OBDRR_01_Power_Balance_Penalty_Updates_to_%20Align_ 
with_PUCT_Approved_High_System_Wide_Offer_Ca.docx 
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6. OPERATING RESERVES DEMAND CURVE 

The most important and influential administrative scarcity pricing mechanism in ERCOT is the ORDC that 

reflects the willingness to pay for spinning and non-spinning reserves in the real-time market.  Figure A4 

illustrates our approach to implementing ORDC in our modeling, which is similar to ERCOT’s 

implementation, with some simplifications.   

Figure A4. Operating Reserve Demand Curves 

 

The ORDC curves were calculated based on a loss of load probability (LOLP) at each quantity of reserves 

remaining on the system, multiplied by the value of lost load (VOLL) caused by running short of operating 

reserves.18  This curve reflects the incremental cost imposed by running short of reserves and is added to 

the marginal energy cost to estimate the total marginal system cost and price. 

 
18 Note that the lost load implied by this function and caused by operating reserve scarcity is additive to the lost load.  
This is because the LOLP considered in ERCOT’s ORDC curve is caused by sub-hourly changes to supply and demand 
that can cause short-term scarcity and outages that are driven only by small quantities of operating reserves but are 
not caused by an overall resource adequacy scarcity, which is the type of scarcity we model elsewhere in this study.  
For simplicity and clarity, we refer to these reserve-related load-shedding events as “reserve scarcity costs” to 
distinguish them from the load shedding events caused by total supply scarcity.  We do not independently review 
here ERCOT’s approach to calculating LOLP, but instead take this function as an accurate representation of the 
impacts of running short of operating reserves.   
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The x-axis of the curve reflects the quantity of operating reserves available at a given time, where: (a) the 

spin ORDC includes all resources providing regulation up or RRS, suppliers that are online but dispatched 

below their maximum capacity, hydrosynchronous resources, non-controllable load resources, and 10-

minute quickstart; and (b) the spin + non-spin ORDC include all resources contributing to the spin x-axis as 

well as any resources providing NSRS and all 30-minute quickstart units.  Table A4 provides a summary of 

the resources in the model that were always available to contribute to the ORDC x-axis unless they were 

dispatched for energy.  It should be noted that the realized ORDC x-axis during a given hour in the 

simulation can be higher (if other resources are committed but not outputting at their maximum 

capability) or lower (during peaking conditions when some of the below resources are dispatched for 

energy). 

Table A4. Resources Always Contributing to ORDC X-Axis Unless Dispatched for Energy 

Reserve Type MW 

Spin X-Axis  

     Hydrosynchronous Resources 245 

     Non-Controllable Load Resources 1,115 

Non-Spin X-Axis  

     30-Minute Quickstart 5,058 

Total Spin + Non-Spin 6,894 

 

As in ERCOT’s ORDC implementation, we calculated: (a) non-spin prices using the non-spin ORDC; (b) spin 

prices as the sum of the non-spin and spin ORDC; and (c) energy prices as the sum of the marginal energy 

production cost plus the non-spin and spin ORDC prices. However, as a simplification we did not scale the 

ORDC curves in proportion to VOLL minus marginal energy in each hour.19 Instead, we treated the ORDC 

curves as fixed with a maximum total price adder of VOLL minus $500. This caused prices to rise to the cap 

of $5,000/MWh in scarcity conditions, because $500 is the cap placed on marginal energy prices in the 

model.  Higher-cost demand-response resources were triggered in response to high ORDC prices and 

therefore prevented prices from going even higher but did not affect the “marginal energy component” 

of price-setting. We modeled the ORDC curves out to a maximum quantity of 8,000 MW where the reserve 

price adders were zero. 

These ORDC curves create an economic incentive for units to be available as spinning or non-spinning 

reserve, which influences suppliers’ unit commitment decisions. We therefore modeled unit commitment 

in two steps: (1) a week-ahead optimal unit commitment over the fleet, with the result determining which 

 
19 See ERCOT’s implementation in 
http://lmpmarketdesign.com/papers/Back_Cast_of_Interim_Solution_B_Improve_Real_Time_Scarcity_Pricing_Whi
tepaper.pdf 
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long-lead and combined cycle resources will be committed;20 and (2) an hourly economic dispatch that 

dispatches online baseload units, and can commit 10-minute and 30-minute quickstart units if needed to 

satisfy energy or ancillary service requirements.21 Note that 10-minute quickstart units can earn spin 

payments from an offline position while 30-minute quickstart units can earn non-spin payments from an 

offline position. The model did not allow these resources to self-commit unless doing so resulted in greater 

energy and spin payments (net of variable and commitment costs) than would be available from an offline 

position.  We used a similar logic to economically commit or de-commit units until the incentives provided 

by the ORDC were economically consistent with the quantity of resources turned on. 

 

 
20 Short-term resources are included in the week-ahead commitment algorithm, but their commitment schedule is 
not saved since it will be dynamically calculated in a shorter window.  But using short-lead resources in the week-
ahead commitment allows them to affect the commitment of long-lead resources. 
21 These week-ahead and day-ahead commitment algorithms minimize cost subject to meeting load as well as 
ERCOT’s administratively determined regulation up, spinning reserve targets, and non-spin targets. 


