

SUNGROW's GFM Capabilities and Perspective on ERCOT's Advanced Grid Support Requirements for ESR

Presented by Ling Chen, Sungrow USA

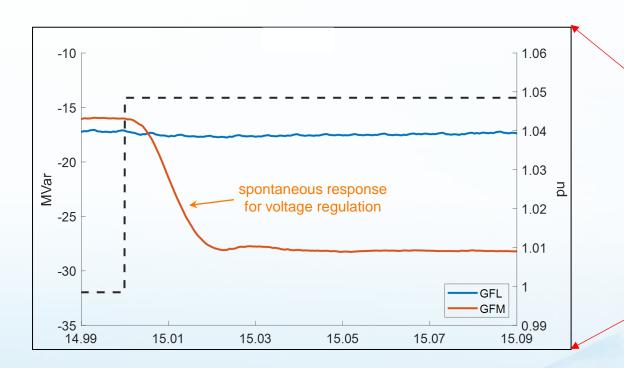
Confidential

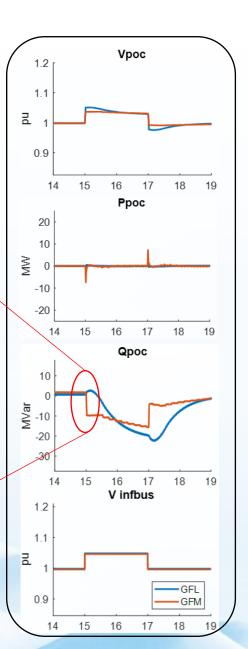
2025.2.21

Clean power for all

CONTENT

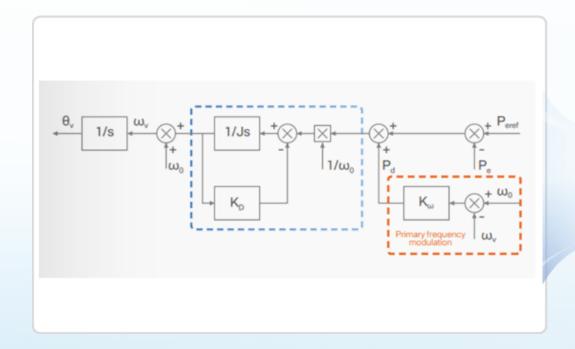
- 1. GFM Technology and Benefits
- 2. GFM Model Test Results
- 3. SUNGROW GFM Project References



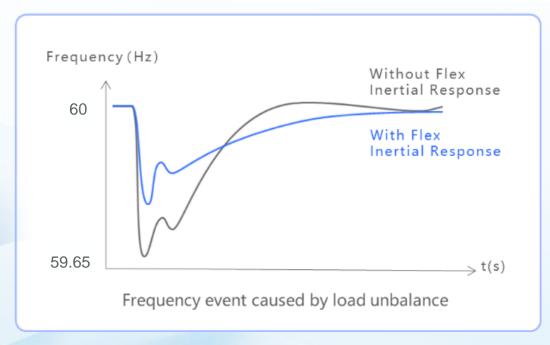


GFM Technology and Benefits

Autonomously and instantaneously respond to voltage / frequency fluctuations

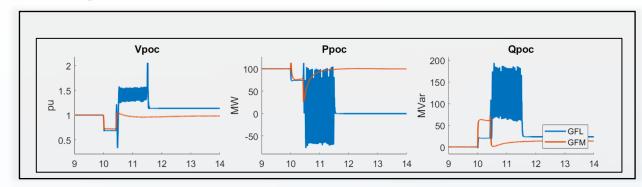


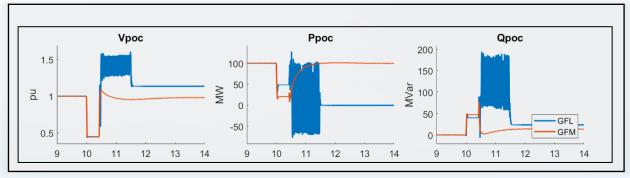
GFM Technology and Benefits_Conti.

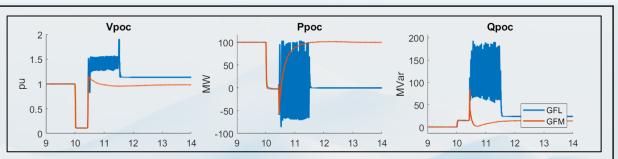


• Flexible inertia control and improved primary frequency response control to enhance frequency stability

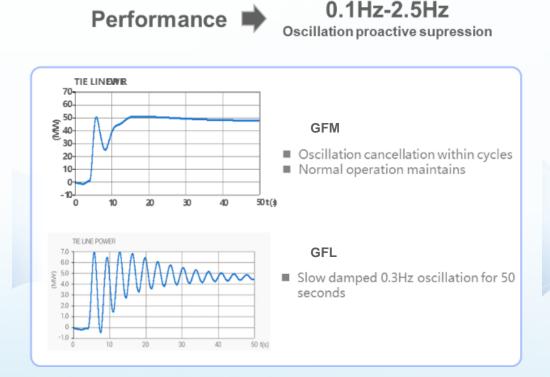
The Technique

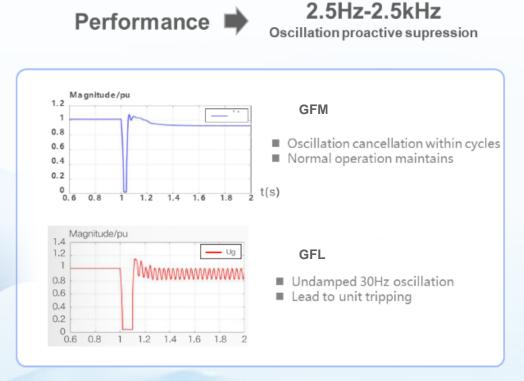





GFM Technology and Benefits_Conti.

- Ride through capability under extremely weak grid condition
 - LVRT Ride Through with Different Voltage Dip Depth



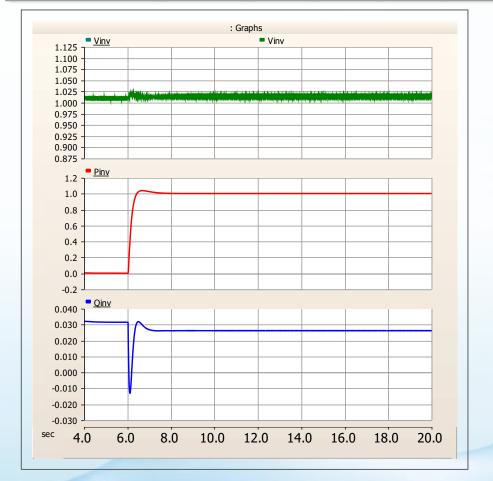


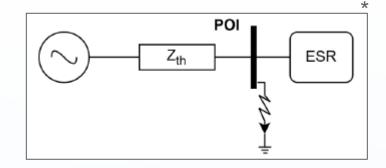
GFM Technology and Benefits_Conti.

 Oscillation damping capability to enhance stability at different operation levels – IBR Unit, IBR site and beyond

CONTENT

- 1. GFM Technology and Benefits
- 2. GFM Model Test Results
- 3. SUNGROW GFM Project References



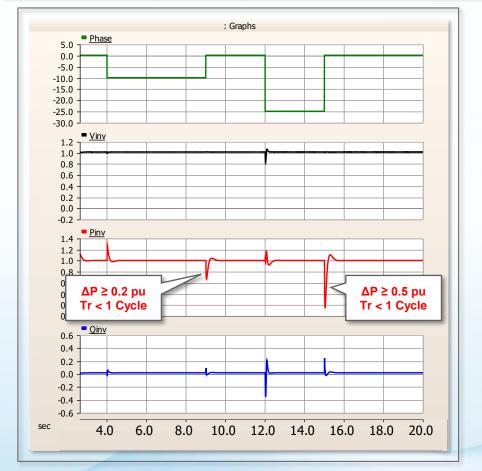


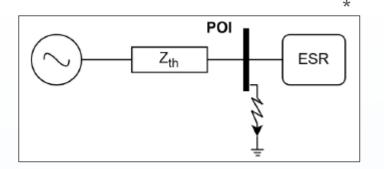
GFM Model Test Results

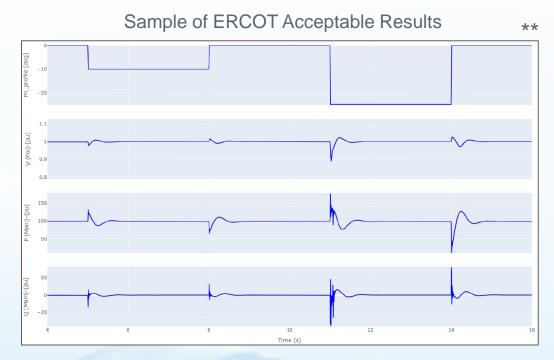
Flat Start Test								
Test Case Name		est Bench	P pu	Q pu	SCR	X/R		
Flat Start Te	est	TB1	1	0	3	6		

Sample of ERCOT Acceptable Results

^{*} Advanced Grid Support Energy Storage Resource, (AGS-ESR) Functional Specification and Test Framework for the ERCOT Grid, Version 1.0, September 2024

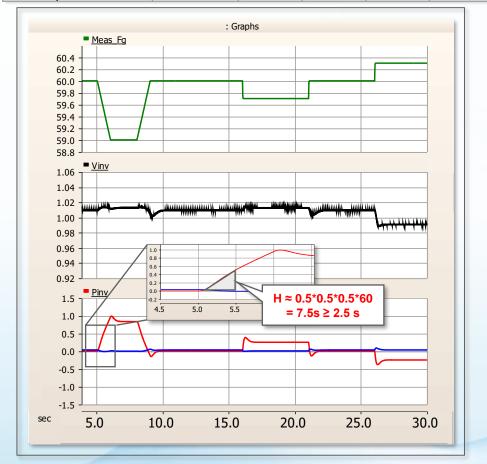

^{**} ERCOT AGS ESR Requirements, Poria Astero, Sun Wook Kang, Dynamic Studies, ERCOT, IBRWG/DWG Joint Workshop, October 11, 2024 Clean power for all

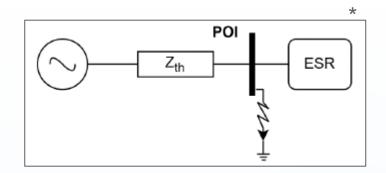



GFM Model Test Results_Conti

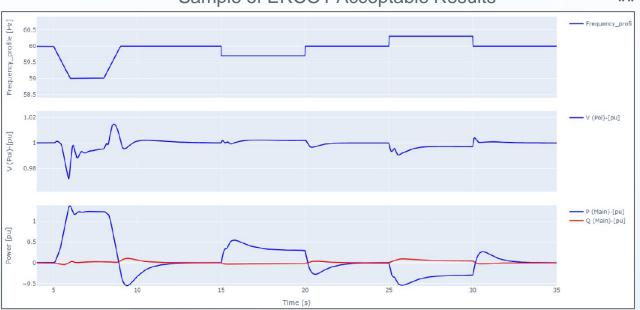
Phase Angle Jump Test							
Test Case Name	Test Bench	P pu	Q pu	SCR	X/R		
Phase Angle Jump Test	TB1	1	0	3	6		

^{*} Advanced Grid Support Energy Storage Resource, (AGS-ESR) Functional Specification and Test Framework for the ERCOT Grid, Version 1.0, September 2024


^{**} ERCOT AGS ESR Requirements, Poria Astero, Sun Wook Kang, Dynamic Studies, ERCOT, IBRWG/DWG Joint Workshop, October 11, 2024 Clean power for all



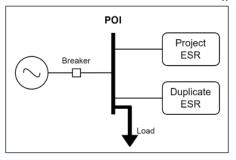
GFM Model Test Results_Conti

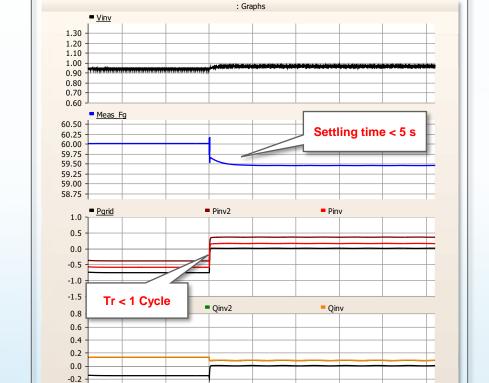


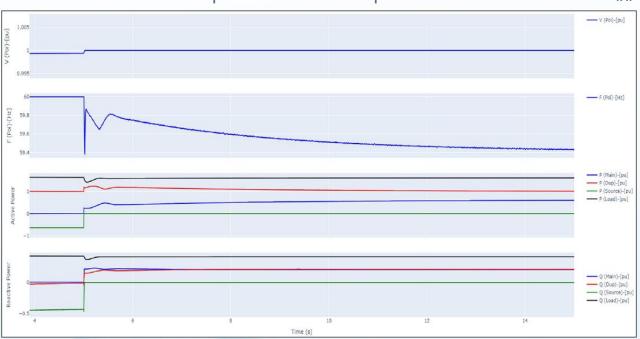
Frequency Change and Inertia Response Test							
Test Case Name	Test Bench	P pu	Q pu	SCR	X/R		
Frequency Change and Inertia	TB1	0	0	3	6		
	TB1	0	0	3			

^{*} Advanced Grid Support Energy Storage Resource, (AGS-ESR) Functional Specification and Test Framework for the ERCOT Grid, Version 1.0, September 2024

^{**} ERCOT AGS ESR Requirements, Poria Astero, Sun Wook Kang, Dynamic Studies, ERCOT, IBRWG/DWG Joint Workshop, October 11, 2024 Clean power for all




GFM Model Test Results_Conti.


Loss of Synchronous Machine Test						
Test Case Name	Test Bench	P1/P2 pu	Q pu	Load pu	SCR	X/R
Loss of Synchronous	TB2	0.6(Charging)	0	0.7	N/A	N/A
Machine Test	152	0.4(Charging)				

10.00 12.50 15.00 17.50 20.00 22.50

Sample of ERCOT Acceptable Results

^{*} Advanced Grid Support Energy Storage Resource, (AGS-ESR) Functional Specification and Test Framework for the ERCOT Grid, Version 1.0, September 2024

^{**} ERCOT AGS ESR Requirements, Poria Astero, Sun Wook Kang, Dynamic Studies, ERCOT, IBRWG/DWG Joint Workshop, October 11, 2024 Clean power for all

Further Clarification and Discussion on AGS-ESRs requirements

ERCOT Proposed AGS-ESRs Requirements

- ERCOT proposed AGS-ESRs requirements
 - Provide support when resources have available capacity/state of charge (SOC) and are within the design capability
 - Don't require additional short circuit current capability
 - Don't need to maintain available capacity/SOC in real time
 - Require to meet the proposed model quality and unit validation tests as stated in the PGRR121
 - Require to meet the same performance requirements as the existing IBRs
- ERCOT's proposal is to have the minimum requirements without requiring ESRs to provide additional hardware or energy reserves to provide specific short circuit current or inertia contribution
- The primary benefit AGS-ESRs provide to the ERCOT grid is the system strength improvement and grid stability

*** NOGRR272/PGRR121 Advanced Grid Support Requirements for Inverter Based ESRs, Shun Hsien (Fred) Huang, ERCOT Operations Support, ERCOT Reliability and Operations, Subcommittee (ROS) Meeting February 6, 2025

CONTENT

- 1. GFM Technology Interpretation
- 2. GFM Model Test Results
- 3. SUNGROW GFM Project References

Typical GFM References

Project information

Project capacity: 15MW/5.5MWh BESS

Project location: Indiana, US

• Project time: 2019

Product models: SC2500U+ Air Cooled Batteries

Technology application: Black start application using VSG technology.

 Using grid-forming ESS to replace diesel generators to complete the black start of two 110MW gas turbines

Project information

Values

- Project capacity: 536MW/600MWh BESS, 2GW PV
- Project time: Q1 2025
- · Project location: Saudi Arabia
- Product models: PowerTitan G1, 1+X modular inverters
- Technology application: Coordinated grid-forming of PV & storage, seamless on-grid/offgrid switching.
- This project provides stable and reliable power supply for a new city in the Middle East.
- Grid-forming helps to build the world's largest new energy hydrogen production base.
- Seamless on-grid/off-grid switching.

Typical GFM References

Project information

• Project capacity: 200MW/800MWh BESS

• Product models: SC6900UD-MV + PowerTitan G2 Batteries

Technology application: On-grid VSG technology.

- · Applying grid-forming technologies to remediate system strength charges, and provide extra system strength.
- Provide extra grid forming values for potential future ancillary services.

Project information

Product models: SC5000UD-MV + PowerTitan G2 Batteries

Project capacity: 30MW/60MWh BESS

· Project location: Finland

• Project time: 2025 Q3

Technology application: On-grid VSG technology.

 Applying grid forming technologies to comply with Finland grid code, helping to enhance regional grid.

Questions? Thank You!